内江师范学院学报2024,Vol.39Issue(4) :65-71.DOI:10.13603/j.cnki.51-1621/z.2024.04.011

改进CycleGAN的素描头像到现实头像转换

Improved sketch-to-realistic avatar conversion with CycleGAN

廖振 林国军 胡鑫 游松 兰江海 周旭 罗春兰
内江师范学院学报2024,Vol.39Issue(4) :65-71.DOI:10.13603/j.cnki.51-1621/z.2024.04.011

改进CycleGAN的素描头像到现实头像转换

Improved sketch-to-realistic avatar conversion with CycleGAN

廖振 1林国军 1胡鑫 1游松 1兰江海 1周旭 1罗春兰1
扫码查看

作者信息

  • 1. 四川轻化工大学自动化与信息工程学院,四川 宜宾 644000
  • 折叠

摘要

当前,由素描头像转换的现实头像还存在不够逼真和人脸识别率不高的问题.为此,提出了一种改进CycleGAN的现实头像转换方法.首先,在U-Net自编码器的基础上增加了一个人脸特征提取器.其次,将人脸特征提取器提取的特征与U-Net解码器中的特征采用通道连接的方式进行特征融合,再对融合后的特征做进一步解码处理.最后,将基础模型CycleGAN转化为监督学习模型,从而对转换头像与真实头像添加图像空间损失和风格损失.实验结果表明:改进模型较基础模型转换的现实头像,在CUHK测试集上FID值降低了27.31、Rank-1提高了19%,在XM2VTS测试集上FID值降低了8.65、Rank-1提高了4.1%.

Abstract

Currently,the realistic avatars converted from sketch avatars has the problems of insufficient lifelikeness and low face recognition rate.In response to this,a realistic avatar conversion method with improved CycleGAN is proposed.Firstly,a face feature extractor is added to the U-Net self-encoder.Secondly,the features extracted by the face feature extrac-tor and the features in the U-Net decoder are fused using the channel connection method,and the fused features are further de-coded.Finally,the base model CycleGAN is transformed into a supervised learning model so as to add image spatial loss and style loss to the converted avatar and the real avatar.The experimental results show that the improved model reduces the FID value by 27.31 and improves Rank-1 by 19%on the CUHK test set,and reduces the FID value by 8.65 and improves Rank-1 by 4.1%on the XM2VTS test set,compared with the results collected from the converted real avatar of the base model.

关键词

CycleGAN/U-Net自编码/人脸特征提取器/监督学习/图像空间损失/风格损失

Key words

CycleGAN/U-Net self-encoding/face feature extractor/supervised learning/image spatial loss/style loss

引用本文复制引用

基金项目

四川省科技厅项目(2022YFSY0056)

出版年

2024
内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
参考文献量17
段落导航相关论文