首页|一类SEIRQ模型的全局稳定性和分岔分析

一类SEIRQ模型的全局稳定性和分岔分析

扫码查看
研究了一类SEIRQ传染病模型的全局稳定性和分岔现象。基于基本再生数,给出了地方病平衡点的存在条件。讨论了无病平衡点和地方病平衡点的局部稳定性,进一步借助Li-Muldowney的几何方法讨论了地方病平衡点的全局稳定性,利用中心流形定理和正规形理论证明了模型发生了跨临界分岔的现象,展示了传染病在长期传播过程中会逐渐演变成地方传染疾病。最后,对模型进行了数值模拟验证了理论证明的结果。
Global stability and bifurcation analysis of a class of SEIRQ models
The global stability and bifurcation of a SEIRQ model of infectious disease are studied.Based on the basic re-production number,the endemic equilibrium's existence conditions are derived.The local stability conditions of the endemic and disease-free equilibrium are given.Moreover,the Li-Muldowney geometric technique is applied to study the global stability of endemic disease equilibrium.By the center manifold theorem and normal form theory,it is proved that the transcritical bi-furcation occurs,which shows that infectious diseases gradually evolve into endemic diseases during long-term transmission.Finally,the theoretical results are illustrated by numerical simulations.

epidemic modelglobal stabilitytranscritical bifurcationnumerical simulation

刘秋梅、刘玲伶

展开 >

西南石油大学理学院,四川 成都 610050

传染病模型 全局稳定性 跨临界分岔 数值模拟

国家自然科学基金项目四川省科技厅自然科学基金项目四川省科技厅自然科学基金项目

121713372022NSFSC18342022NSFSC0529

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(8)