首页|改进Sage-Husa自适应无迹卡尔曼滤波单体锂电池SOC估计

改进Sage-Husa自适应无迹卡尔曼滤波单体锂电池SOC估计

扫码查看
针对Sage-Husa自适应无迹卡尔曼滤波算法在进行自适应滤波迭代计算过程中存在噪声协方差为负定而导致算法出现中断的问题,提出改进Sage-Husa自适应无迹卡尔曼滤波算法。通过选取Thevenin电路模型作为锂电池等效电路模型,并采用递推最小二乘法对锂电池等效电路模型的参数进行辨识,然后将时变噪声统计估计器中的过程噪声协方差阵设置为常值,同时将测量噪声协方差阵进行绝对值计算来改进算法,最后针对改进Sage-Husa自适应无迹卡尔曼滤波算法的精度性和收敛性进行仿真验证。仿真结果表明,改进后的算法不仅能在不同工况和不同初值条件下进行完整的迭代估算,而且相较于同条件下的无迹卡尔曼滤波算法,改进后的算法还具有更高的SOC估算精度;同时,改进后的算法在不同初值条件下均能快速收敛到真值,具有较快的收敛速度。
Improved Sage-Husa adaptive unscented Kalman filtering for SOC estimation of single lithium batteries
Aiming at the problem that the noise covariance of Sage-Husa adaptive traceless Kalman filtering algorithm is negatively determined during the iterative computation of adaptive filtering which leads to the interruption of the algorithm,an improved Sage-Husa adaptive traceless Kalman filtering algorithm is proposed.By selecting the Thevenin circuit model as the equivalent circuit model of the lithium battery,and using the recursive least squares method to identify the parameters of the e-quivalent circuit model of the lithium battery,and then setting the process noise covariance array in the time-varying noise sta-tistical estimator to a constant value,and at the same time,calculating the absolute value of the measurement noise covariance array to improve the algorithm,and then improving the accuracy and performance of the Sage-Husa adaptive trace-free Kalman filtering algorithm,we propose to improve the Sage-Husa adaptive trace-free Kalman filtering algorithm.Finally,the accuracy and convergence of the improved Sage-Husa adaptive traceless Kalman filtering algorithm are simulated and verified.The simu-lation results show that the improved algorithm can not only carry out complete iterative estimation under different working conditions and different initial values,but also has higher SOC estimation accuracy compared with the trace-free Kalman filter algorithm under the same conditions;at the same time,the improved algorithm can quickly converge to the true value under different initial value conditions,and it has faster convergence speed.

improved Sage-Husa algorithmadaptive unscented Kalman filterlithium batterySOC estimation

胡鑫、谭功全、廖振、谢晗、罗春兰

展开 >

四川轻化工大学 自动化与信息工程学院,四川自贡 643000

四川轻化工大学 人工智能四川省重点实验室,四川 宜宾 644005

中核建中核燃料元件有限公司,四川 宜宾 644000

改进Sage-Husa算法 自适应无迹卡尔曼波 锂电池 SOC估计

四川省科技厅项目

2020JDJQ0075

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(8)