首页|广义Fibonacci方程的渐近稳定性

广义Fibonacci方程的渐近稳定性

扫码查看
Fibonacci数列的递推关系是一个二阶线性差分方程.本文首先讨论了广义Fibonacci方程零解渐近稳定的参数条件,其次考虑上述广义Fibonacci方程在非线性扰动下的动力学性质,通过分析得到非线性扰动不会破坏线性近似系统的零解渐近性的参数条件,从而系统的零解的渐近稳定性可以由它的线性近似系统零解的渐近稳定性来确定,于是给出其在非线性扰动下零解渐近稳定的参数条件.
Asymptotic stability of generalized Fibonacci equations
The recurrence relation that represents the Fibonacci sequence is given by the second-order linear difference e-quation.Firstly,The parameter conditions of asymptotic stability of zero solution of generalized Fibonacci equation are dis-cussed.Secondly,the dynamic properties of the above generalized Fibonacci equation under nonlinear perturbations are consid-ered,the parametric conditions under which the nonlinear perturbations do not destroy the asymptotic properties of the zero solution of the linear approximate system are obtained through analysis,so that the asymptotic stability of the zero solution of the system can be determined by the asymptotic stability of the zero solution of the linear approximate system.The parameter conditions of asymptotic stability of zero solution under nonlinear disturbance are given.

Fibonacci sequencedifference equationnonlinear disturbanceasymptotic stability

陈鑫

展开 >

四川大学数学学院,四川 成都 610064

Fibonacci数列 差分方程 非线性扰动 渐近稳定

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(12)