首页|基于多特征融合的生成对抗网络图像修复算法

基于多特征融合的生成对抗网络图像修复算法

扫码查看
针对现有图像修复算法存在结构不一致和纹理模糊等问题,提出一种基于多特征融合的生成对抗网络图像修复算法.该算法在传统的生成器中引入结合坐标注意力的多特征融合模块(CAMFM)获取更大感受野和多尺度特征.此外,生成器设计为双编码结构并引入注意力对图像进行特征提取,在生成器中引入VGG19网络提取特征用于计算感知损失和风格损失.在CelebA数据集上进行验证,计算修复结果的峰值信噪比(PSNR)为28.75dB,结构相似性(SSIM)为0.938,Fréchet Inception距离(FID)为5.99.该算法与五种基准算法比较,在三个指标上均最优,证明该算法具有好的修复性能.
Image inpainting algorithm of generative adversarial network based on multi feature fusion
Aiming at problems in existing image inpainting algorithms,such as inconsistent structure and blurred tex-ture,an image inpainting algorithm of generative adversarial network based on multi feature fusion was proposed.This algo-rithm introduces a multi feature fusion module(CAMFM)that combines coordinate attention mechanism in traditional genera-tors to obtain larger receptive fields and multi-scale features.In addition,the generator is designed with a dual encoding struc-ture and introduces attention for image feature extraction.The VGG19 network is introduced in the generator to extract fea-tures for calculating perceptual loss and style loss.Verified on the CelebA dataset,the peak signal-to-noise ratio(PSNR)of the repair results is 28.75dB,the structural similarity(SSIM)is 0.938,and the Fréchet Inception distance(FID)is 5.99.Compared with the four benchmark algorithms,the algorithm proposed in the article showed the best performance in all three indicators,proving that the algorithm proposed in the article has good repair performance.

multi-feature fusionimage inpaintinggenerative adversarial networkdual encoding

吴泓成、林国军、朱晏梅、王志舜

展开 >

四川轻化工大学 自动化与信息工程学院 四川 宜宾 644000

四川轻化工大学 人工智能四川省重点实验室,四川 宜宾 644000

多特征融合 图像修复 生成对抗网络 双编码

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(12)