首页|机器学习法优化髋关节置换术围手术期治疗策略

机器学习法优化髋关节置换术围手术期治疗策略

扫码查看
目的:基于机器学习法建立预测模型,探讨其对老年股骨颈骨折髋关节置换术围手术期输血和进入ICU的预测价值.方法:分析南京市第一医院2012 年1 月至2021 年12 月的股骨颈骨折行髋关节置换患者500 例的临床资料,建立髋关节置换术后输血的预测模型和进入ICU的预测模型,并且评估不同模型的预测效能.探讨影响髋关节置换术围手术期治疗的危险因素,绘制受试者工作特征(ROC)曲线,使用ROC曲线下面积(AUC)、准确率、灵敏度、特异度和 F1 得分来评价模型的预测性能,获得预测性能最佳的模型预测变量的重要性评分.结果:以输血为结局变量,平衡数据前随机森林的AUC值、准确率及特异度均是4 个模型中最高的;平衡数据后支持向量机的AUC值、准确率、特异度以及F1 得分均是最高的.以是否进ICU为结局变量,平衡数据前随机森林算法的AUC值最高,随机森林算法表现较好;平衡数据后支持向量机算法的AUC值和F1 得分最高,表现最好.以是否输血为结局变量,预测变量重要性评分结果显示,术前血红蛋白和术前肌酐具有较高的重要性.以是否进ICU为结局变量,预测变量重要性评分结果显示,平衡数据前术前血红蛋白、年龄和术前肌酐具有较高的重要性;而平衡数据后术前肌酐和术前白蛋白具有较高的重要性.结论:围手术期重点关注患者的年龄、术前血红蛋白、术前肌酐、术前白蛋白,加强髋关节置换术围手术期管理,有助于老年股骨颈骨折患者的恢复,减少并发症.
Machine learning optimization of perioperative treatment strategies for hip replacement surgery
Objective:Based on machine learning methods,prediction models were established to explore the pre-dictive value of perioperative blood transfusion and ICU for hip replacement surgery in elderly patients with femoral neck fracture.Methods:The clinical data of 500 patients with femoral neck fractures undergoing hip replacement surgery at Nanjing First Hospital from January 2012 to December 2021 was analyzed.Predictive models for blood transfusion after hip replacement surgery and whether to enter the ICU were established,the predictive efficacy of different models were evaluated.The risk factors that affect the treatment in perioperative period of hip replacement surgery were explored.The receiver operating characteristic(ROC)curve was plotted,and the area under theROC curve(AUC),accuracy,sensitivity,specificity and F1 score were used to evaluate the predictive performance of the models,the importance score of the models predictive variables with the best predictive performance was ob-tained.Results:Using blood transfusion as the outcome variable,the AUC value,accuracy,and specificity of the random forest before balancing data were the highest among the four models;After balancing the data,the support vector machine had the highest AUC value,accuracy,specificity,and F1 score.Taking whether to enter the ICU as the outcome variable,the random forest algorithm had the highest AUC value before balancing data,and the ran-dom forest algorithm performed better;After balancing the data,the support vector machine algorithm had the high-est AUC value and F1 score,performing the best.The importance score of predictive variables,based on whether or not blood transfusion was used as the outcome variable,showed that preoperative hemoglobin and creatinine were of high importance.Taking whether to enter the ICU as the outcome variable,predicting the importance score of variables,before balancing the data,preoperative hemoglobin,age,and preoperative creatinine had high impor-tance;After balancing the data,preoperative creatinine and preoperative albumin had high importance.Conclusion:By analyzing clinical data through machine learning,the perioperative focus is on the patient's age,preoperative hemoglobin,preoperative creatinine,and preoperative albumin.Strengthening perioperative manage-ment of hip replacement surgery can help elderly patients with femoral neck fractures recover and reduce complica-tions.

machine learningfemoral neck fracturehip replacement surgeryblood transfusionICUrisk fac-torsprediction model

费俊梁、马成、王黎明、蒋纯志、李旭祥、王思娜、赵杨、曾逸文

展开 >

南京医科大学附属南京医院/南京市第一医院 骨科,江苏 南京 210006

南京医科大学公共卫生学院生物统计学系,江苏 南京 211112

机器学习 股骨颈骨折 髋关节置换术 输血 ICU 危险因素 预测模型

2024

东南大学学报(医学版)
东南大学

东南大学学报(医学版)

CSTPCD
影响因子:1.374
ISSN:1671-6264
年,卷(期):2024.43(2)
  • 8