首页|基于改进的MobileNetV3多肉植物图像分类识别

基于改进的MobileNetV3多肉植物图像分类识别

扫码查看
为能完成多肉植物的高精度分类识别,深入多肉植物栽培领域,选取10种多肉植物为数据类别,基于其根、茎、叶的形态特征,并加入对比试验,采用相同方法对AlexNet、VGG16、ResNet50、MobileNetV3等4种深度卷积模型在不进行迁移学习条件下,超参数指定学习率为0.001、都使用Adam优化器的基础上进行训练.结果显示,MobileNetV3的总体学习效果最好,并在迁移学习的基础上继续改进MobileNetV3模型,在卷积层引入空洞卷积和RAdam优化算法进行参数调优,平均测试识准确率可以达到99.7%,经过模型改进后的MobileNetV3网络模型对多肉植物识别效果较好.
Classification and Recognition of Succulent Plant Images Based on Improved MobileNetV3
In order to complete the high-precision classification and identification of succulents and deepen the cultivation field of succulents,10 kinds of succulents were selected as data categories,based on the morphological characteristics of their roots,stems and leaves,and comparative tests were added.The same method was used to train four deep convolutional models,including AlexNet,VGG16,ResNet50 and MobileNetV3,without transfer learning,with a learning rate of 0.001 specified by hyperparameter and Adam optimizer.The results show that MobileNetV3 has the best overall learning effect.On the basis of transfer learning,Mo-bileNetV3 model continues to be improved,and cavity convolution and RAdam optimization algorithm are introduced into the con-volution layer for parameter optimization.The average test recognition accuracy rate can reach 99.7%.The improved MobileNetV3 network model has a good effect on the identification of succulents.

succulent plantMobileNetV3transfer learningempty convolutionRAdamimage classification

江会权

展开 >

浙江农林大学,浙江 杭州 311300

多肉植物 MobileNetV3 迁移学习 空洞卷积 RAdam 图像分类

2024

农业技术与装备
山西省农业机械化技术推广总站 山西省农业技术推广站 山西省农业生态环境建设总站

农业技术与装备

影响因子:0.132
ISSN:1673-887X
年,卷(期):2024.(5)
  • 8