首页|基于改进DeepLab V3+模型的番茄叶片病害检测与识别研究

基于改进DeepLab V3+模型的番茄叶片病害检测与识别研究

扫码查看
番茄叶片病害的准确识别对于番茄病害防治至关重要.提出了一种基于改进DeepLab V3+语义分割模型的番茄叶片病害多类别分割模型,有效提升了番茄病害防治的精确性.研究中,为进一步提升特征的表达能力,在特征提取骨架的输出特征图之后引入自注意力模块,同时使用一种基于多层级通道注意力的特征融合策略,通过全局池化技术来捕捉通道间的相关性,改善了不同层级特征融合时的信息对齐问题.通过在番茄叶片病害数据集上的试验验证,改进后模型的平均像素准确率、平均交并比均有一定的提升,论证了改进的有效性.
Research on Tomato Leaf Disease Detection and Recognition Based on Improved DeepLab V3+Model
Accurate identification of tomato leaf diseases is essential for tomato disease control.A multi-category segmentation mod-el of tomato leaf diseases based on the improved DeepLab V3+model was proposed to improve the accuracy of tomato disease con-trol.To improve the features expressive ability,a self-attention module was introduced after the output feature map of the backbone.A feature fusion strategy based on multi-level channel attention was also used,which captures the correlation between channels through global pooling and improves the information alignment problem during feature fusion at different levels.Through experimen-tal verification on the tomato leaf disease dataset,the average pixel accuracy and average intersection and union ratio of the im-proved model have been improved to a certain extent,which demonstrates the effectiveness of the improvement.

tomatodisease identificationsemantic segmentationattention mechanismagricultural intelligent diagnosis

姚佳成、葛浩然、张特

展开 >

南京农业大学,江苏 南京 211800

番茄 病害识别 语义分割 注意力模块 农业智能诊断

2024

农业技术与装备
山西省农业机械化技术推广总站 山西省农业技术推广站 山西省农业生态环境建设总站

农业技术与装备

影响因子:0.132
ISSN:1673-887X
年,卷(期):2024.(9)
  • 9