首页|我国体育人工智能领域研究的演进、热点与前沿——基于CiteSpace知识图谱的可视化计量分析

我国体育人工智能领域研究的演进、热点与前沿——基于CiteSpace知识图谱的可视化计量分析

扫码查看
体育人工智能领域的发展对于我国实现体育强国、科技强国及健康中国战略具有重要的理论价值与现实意义.研究对我国体育人工智能领域研究的演进、热点与前沿进行整体把握与分析,以期为该领域科学研究和实践应用提供参考.以中国知网(CNKI)作为研究文献的数据平台,通过CiteSpace软件对我国体育人工智能领域384 篇高质量文献进行知识图谱的可视化计量分析.结果表明:(1)该领域首次出现高质量文献为1992 年,1992-2005 年处于缓慢发展阶段,2006-2016 年处于波动变化阶段,2017 年至今处于蓬勃发展阶段.作者及作者团队之间合作十分欠缺,尚处于各自为政的松散状态.研究机构合作主要是"体育类高校为主,师范类高校和科研院所为辅,综合类高校为补充"的模式.研究机构间合作较少,仍有很大改进空间.(2)通过关键词共现和关键词聚类分析发现,我国体育人工智能重点研究领域为"体育产业"和"竞技体育"聚类;研究热点为"数据挖掘"和"预测模型"方向."体育产业"聚类内体育经济、数字经济和体育产业方向为前沿的研究热点;"竞技体育"聚类内竞技体育、学校体育和全民健身为前沿的研究热点.(3)通过时间线图谱、关键词突现图谱、时区图谱和峰峦图谱分析发现,初期(1992-2005 年为初步探索阶段),研究热点及前沿集中于人工智能、数据挖掘、体育、预测模型、预测、学习和神经网络.中期(2006-2016 年处于稳定发展阶段),研究热点及前沿主要集中于体育产业,其他研究方向较为分散.后期(2017 年至今为研究深化阶段),随着国家一系列政策的出台,体育人工智能上升到国家战略层面,此阶段的研究全面且深入,研究热点及前沿集中于体育赛事、体育成绩、预测模型、神经网络、体育新闻、人工智能、核心素养、体育产业、数字经济、深度学习、大数据、元宇宙、数字技术、体育教育方向的研究.
Evolution,Hot Spots and Frontiers of Research in the Field of Artificial Intelligence in Sports in China:Visualised Metrics Analysis Based on CiteSpace Knowledge Graphs
The development of the field of artificial intelligence in sports has important theoretical value and practical significance for China to realise the strategy of sports power,science and technology power and healthy China.This paper grasps and analyses the evolution,hotspots and frontiers of research in the field of sport AI in China as a whole,with a view to providing reference for scientific research and practical application in this field.Taking China Knowledge Network(CNKI)as the data platform of the research literature,384 high-quality litera-tures in the field of sports AI in China were analysed by CiteSpace software to visualize and measure the knowledge graph.The results show that:(1)the first high-quality literature in this field appeared in 1992,and it was in the stage of slow development from 1992 to 2005,fluc-tuating and changing from 2006 to 2016,and in the stage of booming development from 2017 to the present.Collaboration between authors and teams of authors is lacking,and is still loosely organised.The co-operation among research institutions is mainly in the mode of"sports colleges and universities,supplemented by teacher training colleges and research institutes,and supplemented by comprehensive colleges and universities".There is little cooperation among research institutions,and there is still much room for improvement.(2)Through the key-word co-occurrence and keyword clustering analysis,it is found that the key research areas of AI in sports in China are clustered in"sports industry"and"competitive sports";the research hotspots are"data mining"and"prediction model".The research hotspots are"data mining"and"prediction model".In the"sports industry"cluster,sports economy,digital economy and sports industry are the hotspots for cutting-edge research;in the"competitive sports"cluster,competitive sports,school sports and national fitness are the hotspots for cutting-edge re-search.(3)Through the analysis of timeline mapping,keyword emergence mapping,time zone mapping and peak mapping,it is found that in the early stage(1992-2005 is the initial exploration stage),the research hotspots and fronts are concentrated in artificial intelligence,data mining,sports,predictive modelling,forecasting,learning and neural networks.In the middle stage(2006-2016 is in the stable development stage),the research hotspots and frontiers mainly focus on the sports industry,and other research directions are more scattered.In the later stage(2017 to present is the research deepening stage),with the introduction of a series of national policies,sports artificial intelligence ri-ses to the level of national strategy,the research in this stage is comprehensive and in-depth,the research hotspots and frontiers are concen-trated in the sports events,sports performance,predictive models,neural networks,sports news,artificial intelligence,core literacy,sports in-dustry,digital economy,deep learning,big data,meta-universe,digital technology,and physical education.

sportartificial intelligenceCiteSpacevisual econometric analysisknowledge graphs

李阳、王长权

展开 >

北京师范大学体育与运动学院,北京 100875

体育 人工智能 CiteSpace 可视化计量分析 知识图谱

2024

南京体育学院学报
南京体育学院

南京体育学院学报

影响因子:0.437
ISSN:2096-5648
年,卷(期):2024.23(8)