首页|面向实际场景SLAM应用的光照适应性研究

面向实际场景SLAM应用的光照适应性研究

扫码查看
为探究环境感知设备在SLAM算法应用过程中的光照适应性问题,在不同光照强度下分别进行激光雷达和深度相机SLAM算法的验证性评估实验.基于四轮差速机器人,搭载 16 线激光雷达和深度相机,结合LOAM(Lidar Odometry And Mapping)和 RTAB-MAP(Real-Time Ap-pearance-Based Mapping)算法,分别在明暗环境中分析验证设备光照适应性.实验结果表明:在明亮环境下,基于视觉SLAM和激光 SLAM 系统偏差的中误差分别为 0.203 和 0.644 m;在黑暗环境中两者偏差的中误差分别为 0.282 和0.683 m;深度相机在明、暗环境中的定位建图效果均优于激光雷达,深度相机的光照适应性更强.
Illumination adaptability of SLAM applications in real scenes
To explore the illumination adaptability of environmental perception equipment in application of SLAM(Simultaneous Localization And Mapping),comparative experiments of lidar and depth camera for SLAM were car-ried out under different illumination intensities.Combined with the LOAM(Lidar Odometry And Mapping)and RT-AB-MAP(Real-Time Appearance-Based Mapping)algorithms,a 16-line lidar and a depth camera were placed on a four-wheel differential robot to carry out SLAM application in bright and dark environments.The experimental results show that in bright environment,the median errors of system deviations are 0.203 m and 0.644 m for the visual SLAM and lidar SLAM,respectively,which are 0.282 m and 0.683 m respectively in dark environment.The depth camera outperforms the lidar in positioning and mapping performance in both bright and dark environment,and it can be concluded that the depth camera is more illumination adaptable.

lidar SLAMvisual SLAM(VSLAM)real-time appearance-based mapping(RTAB-MAP)lidar odometry and mapping(LOAM)

柯福阳、陆佳嘉、杭琦琳、宋宝、陈伟超

展开 >

南京信息工程大学无锡研究院,无锡,214000

南京信息工程大学 遥感与测绘学院,南京, 210044

无锡学院物联网工程学院,无锡,214105

南京信息工程大学自动化学院,南京,210044

安徽理工大学 空间信息与测绘工程学院,淮南,232001

展开 >

激光SLAM 视觉SLAM RTAB-MAP算法 LOAM算法

2020年无锡市科技发展资金第十六批江苏省"六大人才高峰"高层次人才项目江苏省自然科学基金

N20201011XYDXX-045BK20211037

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(1)
  • 1