首页|基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测

基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测

扫码查看
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XG-Boost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对 XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的 CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度.
Short term photovoltaic power prediction based on CNN-GRU-ISSA-XGBoost
The high randomness and volatility of photovoltaic(PV)power makes it difficult for single prediction models to accurately analyze the fluctuation patterns in historical data,resulting in low prediction accuracy.To ad-dress this issue,a combined model for short-term PV power prediction was proposed,which incorporated Convolu-tional Neural Network,Gated Recurrent Unit(CNN-GRU)and an Improved Sparrow Search Algorithm(ISSA)for optimizing the eXtreme Gradient Boosting(XGBoost)model.First,the historical data were normalized after outlier removal,and feature selection was carried out via Principal Component Analysis(PCA)so as to better identify the key factors affecting photovoltaic power.Then,the CNN and GRU networks were used to extract the spatial and tem-poral features of the data,respectively.To address the difficulty in manually configuring parameters and high ran-domness of the XGBoost model,ISSA was used to optimize the hyperparameters of the model.Finally,the reciprocal error method was used to reduce the error of the results predicted by the two methods(CNN-GRU and ISSA-XG-Boost)while the weights were updated to obtain new predicted values to complete the prediction of photovoltaic power.The experimental results show that the proposed CNN-GRU-ISSA-XGBoost model has strong adaptability and high accuracy.

photovoltaic power predictionimproved sparrow search algorithm(ISSA)convolutional neural network(CNN)gated recurrent unit(GRU)XGBoost model

岳有军、吴明沅、王红君、赵辉

展开 >

天津理工大学 天津市新能源电力变换传输与智能控制重点实验室,天津,300384

光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型

天津市自然科学基金重点项目天津市教委重点基金

08JCZDJC186002006ZD32

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(2)
  • 16