首页|水库水位的VMD-CNN-GRU混合预测模型

水库水位的VMD-CNN-GRU混合预测模型

扫码查看
水库水位预测为其运营、防洪、水资源调度管理提供了重要决策支持.准确可靠的预测对水资源的优化管理起着至关重要的作用.针对水库水位数据的非线性、不稳定性以及复杂的时空特性,提出一种融合自适应变分模态分解(VMD)、卷积神经网络(CNN)和门控循环单元(GRU)的混合水库水位预测模型.VMD通过对水位序列进行分解消除噪声,CNN用于有效提取水位数据的局部特征,GRU用于提取水位数据的深层时间特征.以葠窝水库日水位为例,与多个相关模型对比分析,结果表明:精度方面,新模型在选取的评价指标上均表现最佳;运算效率方面,本文选择的 GRU与长短时记忆网络(LSTM)相比,运算效率显著提高.新模型预测的高精度、高运算效率更能满足实际水库水位实时调度的需求.
VMD-CNN-GRU hybrid prediction model of reservoir water level
The prediction of reservoir water level provides important decision support for reservoir operation,flood control and water resources operation and management.Accurate and reliable prediction plays an important role in the optimal management of water resources.Aiming at the nonlinearity,instability and complex temporal and spatial characteristics of reservoir water level data,a hybrid reservoir water level prediction model integrating adaptive Vari-ational Mode Decomposition(VMD),Convolutional Neural Network(CNN)and Gated Recurrent Unit(GRU)is proposed.Among them,VMD eliminates noise by decomposing the water level sequence,CNN is used to effectively extract the local features of water level data,and GRU is used to extract the deep time features of water level data.Taking the daily water level prediction of Shenwo reservoir as an example,the proposed model outperforms current deep learning models in accuracy.In terms of computing efficiency,the operation efficiency of GRU selected in this approach is significantly improved compared with Long Short-Term Memory network(LSTM).Therefore,the proposed model has high accuracy and high operation efficiency,and is more suitable for the real-time operation of reservoir water level.

water level predictionvariational mode decomposition(VMD)gated recurrent unit(GRU)convolu-tional neural network(CNN)deep learning

韩莹、王乐豪、魏平慧、李占东、周文祥

展开 >

南京信息工程大学 自动化学院,南京, 210044

南京信息工程大学 大气环境与装备技术协同创新中心,南京,210044

上饶师范学院 上饶农业技术创新研究院,上饶,334001

辽宁省葠窝水库管理局有限责任公司,辽阳, 111000

展开 >

水位预测 变分模态分解 门控循环单元 卷积神经网络 深度学习

国家自然科学基金

62076136

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(2)
  • 16