首页|基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模

基于误差修正和VMD-ICPA-LSSVM的短期风速预测建模

扫码查看
精准的风速预测是将风能大规模应用到电力系统中的关键,而风速序列的随机性和波动性等特点使得风速预测难度增加.为增强风速序列的可预测性,采用Logistic混沌映射策略、自适应参数调整策略以及引入变异策略对食肉植物算法(CPA)进行改进,并提出了基于误差修正和 VMD-ICPA-LSSVM 的短期风速预测模型.首先将气象因子作为最小二乘支持向量机(LSSVM)的输入对风速进行预测,获得误差序列.再利用K-L散度自适应地确定变分模态分解(VMD)的参数,并对误差序列进行分解.结合改进食肉植物算法(ICPA)优化LSSVM可调参数的方法来预测分解的子序列.叠加各子序列预测结果后对原始预测序列进行误差修正,进而得到最终风速预测值.实验结果表明,与其他模型相比,所提模型有着更好的预测精度和泛化性能.
Short term wind speed prediction modeling based on error correction and VMD-ICPA-LSSVM
Accurate wind speed prediction is the key to large-scale application of wind energy in power system,but the randomness and volatility of wind speed sequence make it difficult to predict.Herein,strategies of Logistic chaotic mapping,adaptive parameter adjustment,and the introduction of mutation are used to improve the Carnivo-rous Plant Algorithm(CPA),and a short-term wind speed prediction model based on error correction and VMD-IC-PA-LSSVM is proposed.First,meteorological factors are used as inputs for Least Squares Support Vector Machine(LSSVM)to predict wind speed and obtain an error sequence.Then,K-L divergence is used to adaptively determine the parameters of Variational Mode Decomposition(VMD)and decompose the error sequence.Then the Improved Carnivorous Plant Algorithm(ICPA)is combined to optimize the adjustable parameters of LSSVM to predict the decomposed subsequences.The prediction results of each subsequence are stacked and error correction is performed on the original prediction sequence to obtain the final wind speed prediction values.The experimental results show that the proposed model has excellent prediction accuracy and generalization performance.

variational mode decomposition(VMD)carnivorous plant algorithms(CPA)least squares support vector machine(LSSVM)error correctionwind speed prediction

钟琳、颜七笙

展开 >

东华理工大学 理学院,南昌,330013

变分模态分解 食肉植物算法 最小二乘支持向量机 误差修正 风速预测

国家自然科学基金东华理工大学研究生创新项目

71961001DHYC-202225

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(2)
  • 1
  • 24