首页|基于BA-ELM和模糊机会约束的源荷储资源协同运行

基于BA-ELM和模糊机会约束的源荷储资源协同运行

扫码查看
可靠有效的中长期电力需求预测是电力生产输送的重要依据,同时我国新能源行业发展迅速,风光波动性的影响不可忽视,未来电力系统规划能否适应需求变化场景经济高效地运行成为研究热点.为综合考虑电力需求与电力系统协同运行,平抑新能源波动与需求偏差,提出一种基于蝙蝠算法(Bat Algorithm,BA)优化极限学习机(Extreme Learning Machine,ELM)和引入模糊参数的源荷储资源协同运行算法的预测调度综合评价模型,并以西北某地区为例进行了分析研究,结果表明,该模型可以准确预测不同发展情景下的电力需求,并且可以为源荷储资源规划优化提出科学性参考意见.
Cooperative operation of source-load-storage resources based on BA-ELM and fuzzy chance constraints
Reliable and effective medium-to long-term power demand forecasting serves as a crucial foundation for power generation and transmission.With the rapid development of China's renewable energy sector,the impact of wind and solar power volatility cannot be overlooked.Consequently,ensuring that future power system planning can economically and efficiently adapt to varying demand scenarios has become a topic of high concern.Here,we propose an integrated evaluation model for predictive dispatch based on the Extreme Learning Machine(ELM)optimized by the Bat Algorithm(BA),alongside the introduction of fuzzy parameters in the cooperative source-load-storage oper-ation algorithm.Moreover,an analysis and research study has been conducted in northwest China as an example.The results show that this model can accurately forecast power demand under diverse development scenarios and provides scientific guidance for optimizing the planning of source-load-storage resources.

bat algorithm(BA)extreme learning machine(ELM)demand forecastingsource-network-load-storagepolicy recommendations

张泽龙、陈宝生、杨燕、靳盘龙、刘桐、赵嘉麒

展开 >

国网宁夏电力有限公司 经济技术研究院,银川,750011

蝙蝠算法 极限学习机 需求预测 源网荷储 政策建议

国网宁夏电力有限公司科技项目

5229JY230007

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(5)