首页|基于遗传算法的无人驾驶卡车路径跟踪控制研究

基于遗传算法的无人驾驶卡车路径跟踪控制研究

扫码查看
路径跟踪在无人驾驶中起着至关重要的作用.为提高无人驾驶卡车在不同车速下路径跟踪的精度与稳定性,设计了一种基于改进遗传算法优化的线性二次调节器(LQR)进行路径跟踪.首先,基于自然坐标系建立车辆二自由度动力学模型和跟踪误差模型,并设计LQR控制器,采用前馈控制消除稳态误差,提高跟踪精度;其次,通过改进遗传算法对LQR的权重矩阵进行优化,以提高路径跟踪的精度与稳定性;最后,通过Matlab/Sim-ulink-TruckSim联合仿真平台在不同工况下对所设计的LQR控制器控制效果进行仿真验证.结果表明,在双移线工况下,GA(遗传算法)优化后的LQR控制器在30 km/h和60 km/h跟踪精度分别提高了约68.5%和49.4%;在U形工况下,跟踪精度分别提高了约12.0%和25.5%,且具有更高的稳定性,位置误差和航向误差分别可控制在0.17 m和0.11 rad以内,证明了所提出的跟踪控制框架的有效性.
Path tracking control of unmanned truck based on genetic algorithm
Path tracking is essential for unmanned driving.This article presents the design of a path tracking system for unmanned trucks,aiming to enhance accuracy and stability across various speeds.The system employs a Linear Quadratic Regulator(LQR)optimized through an improved Genetic Algorithm(GA).First,a two-degree-of-freedom dynamic model and a tracking error model of the vehicle are established based on natural coordinate system.Subse-quently,an LQR controller is designed to eliminate steady-state errors and enhance tracking accuracy through feed-forward control.Second,the genetic algorithm is enhanced to optimize the weight matrix of the LQR controller,resul-ting in improved accuracy and stability for path tracking.Finally,the control effectiveness of the designed LQR con-troller is simulated and verified across a range of operating conditions using the joint simulation platform of Matlab/Simulink and TruckSim.The results show that the GA-optimized LQR(Linear Quadratic Regulator)controller im-proves the tracking accuracy by about 68.5%and 49.4%at speeds of 30 km/h and 60 km/h,respectively,under the double lane change scenario;while under the U-turn scenario,the tracking accuracy is enhanced by approxi-mately 12.0%and 25.5%,respectively.Specifically,it demonstrates higher stability,with position and heading errors controllable within 0.17 m and 0.11 rad,respectively,thereby validating the efficacy of the proposed tracking control scheme.

unmanned truckpath trackingLQR controllerimproved genetic algorithm

张涛、赵奉奎、张涌、高峰、吕立亚、李冰林

展开 >

南京林业大学 汽车与交通工程学院,南京,210037

无人驾驶卡车 路径跟踪 LQR控制器 改进遗传算法

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(6)