首页|基于 Time2Vec-LSTM-TCN-Attention 的天然气负荷组合预测

基于 Time2Vec-LSTM-TCN-Attention 的天然气负荷组合预测

扫码查看
针对天然气负荷序列的复杂性和非线性,本文提出一种基于Time2Vec-LSTM-TCN-Attention的天然气负荷组合预测模型.首先,采用皮尔逊相关系数进行相关性分析,提取出相关性强的气象特征;其次,引入时间向量嵌入层Time2Vec,将时间序列转换为连续向量空间,提取相应的时间特征,提高了模型对时间序列信息的计算效率;然后,将Time2Vec提取的时间特征、皮尔逊相关系数选取出的气象特征和原始负荷序列输入到长短期记忆网络(LSTM)和时间卷积网络(TCN)中进行负荷预测,充分利用LSTM的长期记忆能力和TCN的局部特征提取能力;最后,将LSTM和TCN通过注意力(Attention)机制组合起来,并根据其重要程度分别赋予不同的权重,得到最终预测结果.实验结果表明,本文所提出的组合预测模型具有更强的适应性和更高的精度.
Combined forecast of natural gas load based on Time2Vec-LSTM-TCN-Attention
To tackle the complexity and nonlinearity inherent in natural gas load sequences,this paper proposes a combined forecasting model that integrates Time2Vec,LSTM(Long Short-Term Memory),TCN(Temporal Convolu-tional Network),and attention mechanism.Initially,the Pearson correlation coefficient is used to conduct the correla-tion analysis to extract the meteorological features that exhibit strong relevance.Subsequently,the time vector embed-ding layer of Time2vec is introduced to convert the time series data into a continuous vector space,thus enhancing the model's computational efficiency in processing time series information.Then the temporal features extracted by Time2Vec,alongside the meteorological features selected using Pearson correlation coefficient,are fed into both the LSTM and TCN models for prediction,exploiting the long-term memory capability of LSTM and the local feature ex-traction capability of TCN.Finally,these two models are combined through attention mechanism,and assigned differ-ent weights according to the importance of the two to obtain the final prediction results.The experimental results show that the proposed Time2Vec-LSTM-TCN-Attention model outperforms other combined models in terms of adaptability and accuracy for natural gas load forecasting.

Time2Vecattentionlong short-term memory(LSTM)temporal convolutional network(TCN)com-bined forecastingload forecasting

王可睿、邵必林

展开 >

西安建筑科技大学管理学院,西安,710311

Time2Vec 注意力 长短期记忆网络 时间卷积网络 组合预测 负荷预测

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(6)