首页|基于图数据库和图计算的源网荷储协同日内调度计算方法

基于图数据库和图计算的源网荷储协同日内调度计算方法

扫码查看
新型电力系统需要"源网荷储一体化"协同优化调度.目前,调度自动化系统采用关系型数据库,基于多个关联表进行数据查询和存储,难以满足计算的快速性需求.本文提出一种基于图的源网荷储协同日内调度计算方法.首先,利用图数据库实现源网荷储时空数据的融合;其次,综合考虑火电机组、可调节负荷和储能等多种资源,构建源网荷储协同日内调度优化模型;然后,提出基于图计算的潮流计算方法,快速进行系统安全校核;最后,基于安全校核结果修正系统运行状态,直至满足所有的运行约束条件.通过对改进的IEEE118和IEEE1354节点系统算例进行分析,结果表明,本文提出的源网荷储协同优化方法能够提升计算效率.
Intra-day scheduling computing of coordinated generation-grid-load-storage based on graph database and graph computing
The new power system requires cooperative and optimized scheduling in the integration of Generation-Grid-Load-Storage(GGLS).At present,the scheduling automation system employs a relational database that relies on multiple associated tables for data query and storage,making it difficult to meet the rapid computation demands.Here,we propose a graph-based computing method for intra-day scheduling of coordinated GGLS.Firstly,the graph database is used to integrate the spatiotemporal data from power generation,grid,loads,and storage.Secondly,a com-prehensive optimization model of intra-day scheduling of coordinated GGLS is formulated,taking into account various resources such as thermal power units,adjustable loads,and energy storage.Thirdly,a graph-based power flow calculation approach is proposed to quickly perform system security checks.Finally,based on the security check results,the system operating status is corrected until all operational constraints are satisfied.Through analysis of im-proved examples on the IEEE118-node and IEEE1354-node systems,it is verified that the proposed coordinated op-timization strategy for GGLS can improve computational efficiency.

graph computingspatiotemporal data fusiongeneration-grid-load-storage(GGLS)coordinationintra-day scheduling

王珍意、高道春、莫熙、戈本星、路学刚、郄靖彪、谢桦、张沛

展开 >

中国南方电网有限责任公司云南电力调度控制中心,昆明,650000

北京交通大学电气工程学院,北京,100044

天津大学电气自动化与信息工程学院,天津,300072

图计算 时空数据融合 源网荷储协同 日内调度

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(6)