首页|基于多机器人的协同VSLAM综述

基于多机器人的协同VSLAM综述

扫码查看
大规模环境建图时,使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案,可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量大和风险过于集中的问题,有着极强的鲁棒性与稳定性.本文回顾了多机器人协同SLAM的发展历史,介绍了相关的融合算法与融合架构,并从机器学习分类的角度梳理了现有的协同SLAM算法;同时还介绍了未来多机器人SLAM发展的重要方向:深度学习、语义地图与多机器人VSLAM的结合问题,并对未来发展侙作出了展望.
A review on multi-robot collaborative VSLAM
To address the large-scale environmental mapping,lightweight robot swarms are employed to perceive the environment and multi-robot collaborative SLAM(Simultaneous Localization and Mapping)scheme has been developed to solve the problems of high individual cost,global error accumulation,excessive concentration of calcu-lation and risk perplexed single robot SLAM schemes,which has strong robustness and stability.Here,we review the history of multi-robot collaborative SLAM,and introduce its fusion method and architecture.The current collaborative SLAM approaches are sorted out from the viewpoint of machine learning classification.The future development trends of multi-robot SLAM in directions of deep learning,semantic maps,and multi-robot VSLAM are projected.

simultaneous localization and mapping(SLAM)visual SLAM(VSLAM)multi-robot SLAMmobile robotmulti-source data fusionsemantic

王曦杨、陈炜峰、尚光涛、周铖君、李振雄、徐崇辉

展开 >

南京信息工程大学自动化学院,南京,210044

同时定位与地图构建 视觉SLAM 多机器人SLAM 移动机器人 多源数据融合 语义

2024

南京信息工程大学学报
南京信息工程大学

南京信息工程大学学报

CSTPCD北大核心
影响因子:0.737
ISSN:1674-7070
年,卷(期):2024.16(6)