首页|基于注意力机制及多分支特征融合的实时语义分割算法

基于注意力机制及多分支特征融合的实时语义分割算法

扫码查看
为了合理平衡语义分割中的精确度与实时性,基于快速卷积神经网络模型(Fast-SCNN)提出了一种基于注意力机制及多分支特征融合的实时语义分割算法模型.该算法模型首先通过注意力模块捕获空间特征之间的相互联系,增强空间细节信息;然后合理设计融合模块,最大化利用各分支信息,实现深层特征与浅层特征更好的融合;最后引入自适应特征增强注意力模块,捕获长距离像素间的相互依赖关系.实验结果表明,文中算法模型在Cityscapes数据集上获得了 71.55%的分割精度,推理速度FPS达到97.6 帧/s,模型参数量为 1.39 M,验证了该算法所构成网络模型的有效性.
Real-time semantic segmentation based on attention mechanism and multi-branch feature fusion
In order to balance between accuracy and real-time performance in semantic segmentation,based on the fast convolutional neural network model(Fast-SCNN),this paper proposes a real-time semantic segmentation algorithm model which combines the attention mechanism and the multi-branch feature fusion.First,the attention module captures the interrelation between spatial features to enhance the spatial details.Second,the fusion module is designed to maximize the information of each branch to achieve a better fusion of deep features and shallow features.Finally,an adaptive feature enhancement attention module is introduced to capture the interdependencies between long distance pixels.The experimental results show that the proposed algorithm achieves 71.55%segmentation accuracy on Cityscapes dataset,a reasoning speed FPS of 97.6 frame/s,and the parameter number of of 1.39 M.These demonstrate the effectiveness of the network model constructed by the algorithm.

real-time semantic segmentationchannel attentionspatial attentionfeature fusionadaptive attention

蒋锐、陈儒娜、王小明、李大鹏、徐友云

展开 >

南京邮电大学 通信与信息工程学院,江苏 南京 210003

实时语义分割 通道注意力 空间注意力 特征融合 自适应注意力

国家自然科学基金

62271266

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(2)
  • 26