首页|基于梯度注意力机制与交叉神经网络的红外与可见光图像融合

基于梯度注意力机制与交叉神经网络的红外与可见光图像融合

扫码查看
针对现有的基于深度学习的红外与可见光图像融合算法存在的难以区分重要信息与无关信息的问题,提出了一种基于梯度注意力机制与细节保留交叉神经网络(Detail Preserving Cross Network,DPCN)的红外与可见光图像融合方法.首先,将改进的梯度注意力机制引入到DPCN,引导神经网络尽可能关注可见光图像的纹理细节和红外图像的目标信息,同时利用DPCN加强红外图像和可见光图像之间的信息交互.然后,提出了一种基于多尺度细节保留模块的解码器重建融合图像.最后,设计了一种基于辅助判别器的自适应损失函数.实验结果表明:所提方法可保留更清晰的边缘及目标信息,在主观和客观评价方面均优于对比方法.
Infrared and visible image fusion based on an improved gradient attention mechanism and the cross neural network
Since the current infrared and visible image fusion methods based on deep learning are difficult to distinguish important information from irrelevant information,a new infrared and visible image fusion method based on the gradient attention mechanism and the detail preserving cross network(DPCN)is proposed.First,an improved gradient attention mechanism is introduced into the DPCN to guide the network to focus on the texture details of the visible image and the target information of the infrared image as much as possible.The DPCN is used to enhance the information interaction between the infrared image and the visible image.Then,a decoder based on the multi-scale detail preserving module is proposed to reconstruct the merged features.Finally,an adaptive loss function based on an auxiliary discriminator is designed.The experimental results show that the fusion image of the proposed method can retain clearer edge and target information,and is superior to the compared methods in both subjective and objective evaluations.

image fusionattention mechanismdetail preserving cross networkmulti-scale image reconstruction

孙希霞、邓林威、潘甦

展开 >

南京邮电大学 物联网学院,江苏 南京 210003

图像融合 注意力机制 细节保留交叉神经网络 多尺度图像重建

国家自然科学基金国家自然科学基金

6207124462172235

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(3)
  • 26