首页|基于CNN-LSTM和卷复制方法的高可用系统设计方法

基于CNN-LSTM和卷复制方法的高可用系统设计方法

扫码查看
针对单机服务器存在的单点故障问题,以及主备双机中存在的逻辑故障导致数据丢失的问题,设计了一种基于卷积和长短期记忆神经网络(CNN-LSTM)和卷复制方法的 HA(High Availability)系统.系统至少包含两个节点,一个主节点以及一个或多个备用节点,主节点和备节点之间支持主备切换.每个服务器节点上包含4 个模块,分别是负责接收配置信息与读写请求的代理模块;进行磁盘读写操作和重定向读写的磁盘I/O(输入输出)模块;负责主备节点间备份快照、映射表、数据块复制的卷复制模块以及基于CNN-LSTM进行状态检测的高可用模块.实验表明,该系统不仅可以解决单点故障问题,也可以解决主备双机集群中无法解决的逻辑错误问题;同时基于CNN-LSTM方法,自动针对服务器的运行健康状态进行分析和预测,可以根据预测结果自动通知管理员进行处理或自动进行主备切换.
A high availability system based on the CNN-LSTM and volume replication algorithm
Since standalone servers usually face single-point failures and logical errors in master-slave dual machines can lead to data loss,this paper designs a high-availability(HA)system based on convolutional-neural-network-long-short-term-memory(CNN-LSTM)and volume replication technology.This system comprises at least two nodes:a primary node and one or more backup nodes.And it supports failover between the primary and the backup nodes.Each server node has four modules:a proxy module responsible for receiving configuration information and read/write requests;a disk IO module for disk read/write operations and redirecting reads/writes;a volume replication module for backup snapshots,mapping tables,and data block replication between the primary and the backup nodes;and a high availability module that utilizes the CNN-LSTM model to perform status detection.Experimental results demonstrate that this system can solve both the single point of failure and the logical error problems in primary-backup clusters,and can automatically analyze and predict server health status based on support vector machine methods.The prediction can be automatically send to administrators for manual handling,or the failover can be performed automatically.

volume replicationdata losssnapshotconvolutional-neural-network-long-short-term-memory(CNN-LSTM)high-availability(HA)system

张焱、李新建、王畅、章建军、陈小虎、邹鑫灏、严智

展开 >

南京航空航天大学 信息化技术中心,江苏 南京 210016

湖北中烟工业有限责任公司,湖北 武汉 430040

武汉问道信息技术有限公司,湖北 武汉 430040

卷复制 数据丢失 快照 CNN-LSTM 高可用系统

湖北中烟烟草关键应用科研委外项目

2022GLGL3XX2C077

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(4)