首页|基于知识图谱的长短期序列推荐算法

基于知识图谱的长短期序列推荐算法

扫码查看
现有的部分序列推荐算法较少关注用户短期兴趣随时间变化的问题,从而导致推荐的精度不够理想,且在用户兴趣转变的可解释性上有待提高.据此,提出了一种基于知识图谱的长短期序列推荐算法(KGLSR).将交互历史划分为长期和短期行为序列后,结合卷积神经网络与注意力机制进行长期兴趣的特征重构,并引入知识图谱与图注意力更新用户的短期偏好,最后实现自适应聚合.经验证,该模型在3 类真实场景下的数据集中以HR、MRR和NDCG为评价指标的表现均优于对比实验中的主流基线模型.
A long and short-term sequence recommendation algorithm based on knowledge graph
Existing partial sequence recommendation algorithms pay less attention to the problem of user's short-term interest over time,which leads to less-than-ideal recommendation accuracy and to-be-improved interpretability of user's interest shift.Therefore,a long-short-term sequence recommendation algorithm based on knowledge graph,namely KGLSR,is proposed.After dividing the interaction history into long and short-term behavioral sequences,it combines the convolutional neural network(CNN)with the attention mechanism for feature reconstruction of long-term interests,and introduces the knowledge graph with GAT to update user's short-term preferences.Thus,the adaptive aggregation is realized.The comparison experiments demonstrate that the proposed model outperforms the mainstream baseline model in terms of evaluation metrics of HR,MRR and NDCG,on datasets of 3 types of real scenarios.

sequence recommendationknowledge graphlong-short-term interestgraph attention network

胡泽宇、肖玉芝、霍宣蓉、黄涛

展开 >

青海师范大学 计算机学院,青海 西宁 810016

省部共建藏语智能信息处理及应用国家重点实验室,青海 西宁 810008

藏文信息处理教育部重点实验室,青海 西宁 810008

序列推荐 知识图谱 长短期兴趣 图注意力网络

国家重点研发计划国家重点实验室自主课题基金

3142024-SKL-005

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(4)