首页|基于能耗公平性的混合启发式计算迁移算法

基于能耗公平性的混合启发式计算迁移算法

扫码查看
当前边缘计算场景下的计算迁移方案往往存在着诸多问题,如资源分配不均匀、任务分配不合理、低效等.为此,提出了一种基于能耗公平性的混合启发式计算迁移机制.基于边缘服务器的能耗公平性、通信资源、计算资源的综合考量,构建了一个最小化完成所有任务总能耗的优化问题.首先,将能耗公平性指标纳入目标边缘服务器的选择依据中,求解出最优的目标服务器;其次,为解决所提出的混合整数非线性规划问题,设计了一种混合启发式计算迁移决策算法.该算法融合了遗传算法(Genetic Algorithm,GA)和模拟退火算法(Simulated Annealing Algorithm,SA),改善了收敛速度和搜索质量,避免算法陷入局部最优解,同时减少算法对初始参数的依赖性,提高算法的稳定性.仿真结果验证了该机制在能量消耗方面相较于其他基准方法具有显著优势,边缘服务器的能耗公平性也最高,且证实了该机制的收敛速度优势.
A hybrid heuristic computation offloading algorithm based on energy fairness
Computation offloading schemes in edge computing scenarios often face problems,such as uneven resource allocation,unreasonable task assignment and inefficiency.Therefore,we propose a hybrid heuristic computation offloading algorithm based on energy fairness.Specifically,considering the energy fairness,communication resources and computing resources of edge servers,we formulate an optimization problem that minimizes the total energy consumption for completing all tasks.Firstly,we incorporate the energy fairness metric into the selection criteria for the target edge server to obtain the optimal target server.Secondly,we design a hybrid heuristic computation offloading decision algorithm that combines the genetic algorithm(GA)and the simulated annealing(SA)algorithm,thus we could solve the formulated mixed-integer nonlinear programming problem.This algorithm improves the speed of convergence and search quality,avoids getting trapped in local optimum,reduces dependency on initial parameters and enhances algorithm stability.Finally,simulation results validate that the proposed mechanism has significant advantage in terms of energy consumption compared to other benchmark methods and achieves the highest energy fairness for edge servers.It also demonstrates the convergence speed advantage of the proposed mechanism.

edge computingcomputation offloadingheuristic algorithmresource allocation

袁可、陈思光

展开 >

南京邮电大学 物联网学院,江苏 南京 210003

中国移动紫金(江苏)创新研究院有限公司,江苏 南京 210000

边缘计算 计算迁移 启发式算法 资源分配

国家自然科学基金江苏省"333高层次人才培养工程"南京邮电大学"1311"人才计划资助项目

61971235

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(5)