首页|基于域对齐和伪标签细化的域自适应行人重识别算法

基于域对齐和伪标签细化的域自适应行人重识别算法

扫码查看
无监督域自适应行人重识别旨在将知识从有标签的数据集迁移至无标签的数据集,从而减轻对大量有标签数据的需求.现有方法通过聚类生成伪标签解决这个问题,然而,生成的伪标签可能含有噪声,这将大大降低方法性能.为减少伪标签噪声,提高重识别性能,提出一种新颖的基于域对齐和相互引导伪标签细化的域自适应行人重识别方法.首先,利用双分支结构从增强数据中提取判别特征,以丰富特征的多样性;其次,设计一个分布式对抗性域对齐模块,以最小化域间差异;最后,利用局部特征和全局特征间的互补关系,实现局部特征和全局特征相互细化的一致性,从而有效减少伪标签聚类产生的噪声,提高伪标签预测的精度.大量实验结果表明,所提方法在域自适应行人重识别的公开数据集上取得显著效果.论文代码链接地址:https://github.com/cris0799/DAm.
Domain adaptive person re-identification via domain alignment and mutual pseudo label refinement
Unsupervised domain adaptive person re-identification refers to transferring knowledge from the labeled dataset to the unlabeled,the need for large amounts of labeled data can be alleviated.The existing methods that address this problem usually use clustering methods to generate pseudo labels.However,those pseudo labels can be unstable and noisy,and can significantly degrade the performance of the methods.In this paper,we propose a novel domain adaptive person re-identification method via domain alignment and mutual pseudo label refinement.Firstly,we extract discriminative feature from the augmented data using a two-branch structure to enrich the feature diversity.Secondly,we design a distributed adversarial domain alignment module to minimize domain differences.Finally,thanks to the complementary relationship between the local and the global features,we establish the consistency between the two kinds of features to refine pseudo labels predicted by the global features,and thus the noise generated by pseudo label clustering is effectively reduced.Extensive experiments demonstrate that the proposed method can achieve remarkable results on popular benchmark datasets for domain adaptive person re-identification.

person re-identificationdomain adaptationdomain alignmentpseudo label refinement

朱松豪、宋杰

展开 >

南京邮电大学自动化学院、人工智能学院,江苏南京 210023

行人重识别 域自适应 域对齐 伪标签细化

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(6)