首页|基于改进粒子群算法的无人机三维路径规划

基于改进粒子群算法的无人机三维路径规划

扫码查看
因传统粒子群算法在无人机三维路径规划对参数具有较强的依赖性以及容易陷入局部最优的缺点,通过引入混沌映射、改进迭代公式以及引入柯西变异算子优化传统算法的性能.首先,建立无人机三维作业空间;其次,考虑地面和空中悬浮障碍因素,构建适应度函数,在算法迭代过程中,引入带区间约束的Logistic混沌映射增强粒子初始分布的随机性,并利用改进非线性迭代公式平衡算法的全局搜索能力与局部搜索能力,继而引入柯西变异算子避免算法陷入局部最优;最后,大量实验结果证明,相较于3种典型路径规划算法,改进粒子群算法具有较强的跳出局部最优的能力,且具有较稳定的寻优能力.
UAV 3D path planning based on improved particle swarm optimization algorithm
In order to solve the problem that the traditional particle swarm optimization algorithm has strong dependence on parameters and is easy to fall into local optimization,chaotic mapping,improved iteration formula and Cauchy mutation operator are introduced to improve the performance of the algorithm.Firstly,establish the three-dimensional operating space of UAV.Secondly,considering ground and air suspension obstacles factors,the fitness function is constructed.In the process of algorithm iteration,Logistic chaotic mapping with interval constraint is introduced to enhance the randomness of the initial particle distribution,and the global search ability and local search ability of the nonlinear iterative formula balance algorithm are improved.Then Cauchy mutation operator is introduced to avoid the algorithm falling into local optimality.Finally,a large number of experimental results show that compared with the three typical path planning algorithms,the improved particle swarm optimization algorithm has a strong ability to jump out of the local optimal and has a stable optimization ability.

particle swarm optimization(PSO)chaotic mappingnonlinearityCauchy variationthree-dimensional path planningunmanned aerial vehicle(UAV)

朱润泽、赵静、蒋国平、肖敏、徐丰羽

展开 >

南京邮电大学自动化学院、人工智能学院,江程苏南京 210023

南京京邮邮电大学江苏省物联网智能机器人工程实验室,江苏南京 210023

粒子群算法 混沌映射 非线性 柯西变异 三维路径规划 无人机

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(6)