首页|基于缩放框架的改进贝叶斯网络结构优化算法

基于缩放框架的改进贝叶斯网络结构优化算法

扫码查看
贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题.为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法.首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础构建网络搜索空间,提高了网络结构的初始评分;其次,使用基于评分方法的浣熊优化算法寻找评分最高的网络结构,增强了在贝叶斯网络中的评分搜索能力;最后,对评分最高的结构进行加弧、减弧和转向弧操作,寻找拟合程度最高的最优结构.通过在不同复杂度的标准网络上进行模拟实验,结果表明:所提算法收敛速度更快,能够在较短时间内找到最优结构,且结构学习的评分更高,收敛精度较高.由此说明该算法在准确性和搜寻效率方面更有优势.
An improved optimization algorithm for Bayesian network structure based on scaling framework
Finding the optimal network structure is an NP-hard problem for Bayesian networks'probabilistic inference.In order to accurately model the causal relationships between nodes,this paper proposes a learning algorithm with an improved network structure based on a scaling framework.Firstly,the scaling framework is used for causal analysis to determine the strength of causal relationships between nodes through the slope matrix.This result is used as the basis for constructing the network search space,and the initial score of the network structure can be improved.Secondly,the coati optimization algorithm based on scoring methods is used to find the network structure with the highest score.Thus,the scoring search ability in Bayesian networks is enhanced.Finally,the structure with the highest score is processed by the add-arc,the subtract-arc and the steering-arc operations,and the optimal structure with the highest degree of fitting is found.Simulation experiments are conducted on standard networks with different complexities,and the results show that the proposed algorithm converges faster,can find the optimal structure in a shorter time,and has a higher score of structure learning and a higher convergence accuracy.These indicate that the algorithm has more advantages in accuracy and search efficiency.

Bayesian networkstructure learningscaling frameworkscoring methodscoati optimization algorithm(COA)

祁煜翔、钱龙霞、王友国、黄海平

展开 >

南京邮电大学理学院,江苏南京 210023

中国气象局高影响天气重点开放实验室,湖南长沙 410073

南京邮电大学计算机学院,江苏南京 210023

南京邮电大学江苏省无线传感网高技术研究重点实验室,江苏南京 210023

展开 >

贝叶斯网络 结构学习 缩放框架 评分方法 浣熊优化算法

2024

南京邮电大学学报(自然科学版)
南京邮电大学

南京邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.486
ISSN:1673-5439
年,卷(期):2024.44(6)