生物医学研究杂志(英文版)2023,Vol.37Issue(4) :290-301.DOI:10.7555/JBR.36.20220212

Knockdown of 11β-hydroxysteroid dehydrogenase type 1 alleviates LPS-induced myocardial dysfunction through the AMPK/SIRT1/PGC-1α pathway

Dongmei Zhu Lingli Luo Hanjie Zeng Zheng Zhang Min Huang Suming Zhou
生物医学研究杂志(英文版)2023,Vol.37Issue(4) :290-301.DOI:10.7555/JBR.36.20220212

Knockdown of 11β-hydroxysteroid dehydrogenase type 1 alleviates LPS-induced myocardial dysfunction through the AMPK/SIRT1/PGC-1α pathway

Dongmei Zhu 1Lingli Luo 1Hanjie Zeng 1Zheng Zhang 1Min Huang 1Suming Zhou1
扫码查看

作者信息

  • 1. Department of Geriatrics Intensive Care Unit,the First Affiliated Hospital of Nanjing Medical University,Nanjing,Jiangsu 210029,China
  • 折叠

Abstract

Sepsis-induced myocardial dysfunction is primarily accompanied by severe sepsis,which is associated with high morbidity and mortality.11β-hydroxysteroid dehydrogenase type 1(11β-HSD1),encoded by Hsd11b1,is a reductase that can convert inactive cortisone into metabolically active cortisol,but the role of 11β-HSD1 in sepsis-induced myocardial dysfunction remains poorly understood.The current study aimed to investigate the effects of 11β-HSD1 on a lipopolysaccharide(LPS)-induced mouse model,in which LPS(10 mg/kg)was administered to wild-type C57BL/6J mice and 11β-HSD1 global knockout mice.We asscessed cardiac function by echocardiography,performed transmission electron microscopy and immunohistochemical staining to analyze myocardial mitochondrial injury and histological changes,and determined the levels of reactive oxygen species and biomarkers of oxidative stress.We also employed polymerase chain reaction analysis,Western blotting,and immunofluorescent staining to determine the expression of related genes and proteins.To investigate the role of 11β-HSDl in sepsis-induced myocardial dysfunction,we used LPS to induce lentivirus-infected neonatal rat ventricular cardiomyocytes.We found that knockdown of 11β-HSD1 alleviated LPS-induced myocardial mitochondrial injury,oxidative stress,and inflammation,along with an improved myocardial function;furthermore,the depletion of 11β-HSD1 promoted the phosphorylation of adenosine 5'-monophosphate-activated protein kinase(AMPK),peroxisome proliferator-activated receptor gamma coactivator 1α(PGC-1α),and silent information regulator 1(SIRT1)protein levels both in vivo and in vitro.Therefore,the suppression of 11β-HSD1 may be a viable strategy to improve cardiac function against endotoxemia challenges.

Key words

11β-HSD1/LPS/sepsis-induced myocardial dysfunction/inflammation/oxidative stress

引用本文复制引用

基金项目

National Natural Science Youth Foundation of China(81501201)

National Natural Science Youth Foundation of Jiangsu Province(BK20151032)

project of Critical Care Medicine of the Key Clinical Specialty of Jiangsu Province()

出版年

2023
生物医学研究杂志(英文版)
南京医科大学

生物医学研究杂志(英文版)

CSCD
影响因子:0.794
ISSN:1674-8301
参考文献量26
段落导航相关论文