首页|基于相对位置自注意力机制的《伤寒论》实体识别

基于相对位置自注意力机制的《伤寒论》实体识别

扫码查看
目的《伤寒论》是中医学"四大经典"之一,其中富含大量的医疗实践经验以及用药规律,针对《伤寒论》古籍文献数据挖掘中不充分,尤其是古籍文献上下文语义关系复杂,难以全局把握其中关联等问题,对《伤寒论》进行命名实体识别,有助于深入挖掘其潜在知识。方法 根据《伤寒论》古籍文本专业术语多、句式简练的特点,构建双向编码器表征法(Bert)-双向长短期记忆网络(BiLSTM)-相对位置自注意力(RPRSA)-条件随机场(CRF)模型,通过添加相对位置自注意力(RPRSA)层构造命名实体识别模型以识别《伤寒论》中的实体并学习不同层次的信息,从而提高对《伤寒论》中医古籍实体识别的准确度。结果 通过实验验证,提出的命名实体识别模型在《伤寒论》数据集上的F1 分数(F1-Score)、精确率与召回率分别能够达到88。24%、88。48%与 88。00%,通过对比发现其表现优于其他常见命名实体识别模型。结论 基于相对位置自注意力机制的模型相较于其他模型在《伤寒论》实体识别任务中表现更佳,为《伤寒论》乃至各类中医古籍信息抽取以及数据挖掘提供基础和助力,为中医智能辅助诊疗提供了有效手段。
Entity Recognition in Treatise on Cold Damage Based on Relative Position Representation Self-Attention Mechanism
OBJECTIVE Treatise on Cold Damage is one of the"Four Classics of Traditional Chinese Medicine,"containing a wealth of medical practice experience and medication rules.However,there has been insufficient data mining in the ancient literature of Treatise on Cold Damage,particularly due to the complex contextual semantics,making it challenging to fully grasp the interrelation-ships.This study aims to conduct entity recognition in Treatise on Cold Damage to facilitate comprehensive knowledge extraction.METHODS A Bert-BiLSTM-RPRSA-CRF model was constructed based on the specialized terminology and concise sentence struc-ture of the ancient literature.By incorporating a relative position representation self-attention(RPRSA)layer,this named entity recog-nition model aimed to identify entities within the text while learning information at different levels,thereby enhancing accuracy.RE-SULTS Experimental verification demonstrated that our named entity recognition model achieved F1-Score,precision,and recall rates of 88.24%,88.48%,and 88.00%respectively on the Treatise on Cold Damage dataset,outperforming other commonly used models.CONCLUSION Our method outperforms other models in identifying entities within Treatise on Cold Damage,providing a foundation for information extraction from traditional Chinese medicine ancient texts such as Treatise on Cold Damage while offering ef-fective means for intelligent assisted diagnosis and treatment in traditional Chinese medicine.

relative position representation self-attentionnamed entity recognitionTreatise on Cold Damagebidirectional long short-term memory network

徐弘民、李红岩、郎许锋、周作建、凌云、王子琰

展开 >

南京中医药大学人工智能与信息技术学院,江苏 南京 210023

南京中医药大学中医学院,江苏 南京 210023

南京中医药大学中医药文献研究院,江苏 南京 210023

相对位置自注意力 命名实体识别 《伤寒论》 双向长短期记忆网络

2024

南京中医药大学学报
南京中医药大学

南京中医药大学学报

CSTPCD北大核心
影响因子:1.658
ISSN:1672-0482
年,卷(期):2024.40(12)