首页|基于贝叶斯学习的OTFS系统信道估计算法

基于贝叶斯学习的OTFS系统信道估计算法

扫码查看
针对OTFS系统,提出了一种基于贝叶斯学习的信道估计方案.由于实际传输环境中散射体的数目通常是有限的,因此OTFS的时延-多普勒域原始信道响应具有稀疏特性,通过在时延-多普勒域建立虚拟采样网格可将信道估计问题转化为一维离网稀疏信号恢复问题,并提出一种基于扰动稀疏贝叶斯学习的信道估计方法.首先利用一阶线性插值的方式来近似真实观测矩阵,随后利用EM算法联合估计稀疏向量与网格偏移量.仿真结果表明,该算法具有较好的信道估计性能与较低的导频负载率,优于基于贪婪类算法的信道估计方法.
Channel Estimation Algorithm for OTFS System Based on Bayesian Learning
A novel channel estimation technique based on sparse Bayesian learning(SBL)framework is proposed for Orthogonal Time Frequency Space(OTFS)systems.Considering that the number of scatterers in the transmission environment is usually limited,the original delay-doppler(DD)domain channel response exhibits sparse behavior.So the channel estimation issue is formulated as a one-dimensional(1D)off-grid sparse signal recovery(SSR)problem based on a virtual sampling grid defined in the DD space and re-solved by using the proposed Perturbed Sparse Bayesian Learning(PSBL)method.In particular,the linear interpolation method is used to approximate the real observed matrix,and then the expectation-maximiza-tion(EM)method is used to jointly estimate the sparse vector and off-grid components.Simulation results demonstrate that the proposed algorithm has better channel estimation performance and lower pilot load rate,which is superior to the channel estimation method based on greedy algorithm.

OTFSchannel estimationsparse signal recoverycompressed sensing

吴虹、董志瑜、陈琢、慈骋、刘之洋

展开 >

南开大学电子信息与光学工程学院,天津 300350

南开大学光电传感器与传感网络技术重点实验室,天津 300350

光电子薄膜器件与技术研究所,天津 300350

OTFS 信道估计 稀疏信号恢复 压缩感知

国家自然科学基金联合基金项目国家自然科学基金面上项目国家自然科学基金面上项目

U20312086187123961571244

2024

南开大学学报(自然科学版)
南开大学

南开大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.284
ISSN:0465-7942
年,卷(期):2024.57(3)
  • 1