首页|双边反射随机偏微分方程的近似逼近

双边反射随机偏微分方程的近似逼近

扫码查看
研究了时空白噪声驱动的双边反射随机偏微分方程的数值逼近.利用离散化方法构造渐近方程组,并处理确定性障碍问题来得到收敛性.进一步地采用时空分离的两阶段近似估计验证了强收敛性.最后完成了双边反射随机偏微分方程的数值模拟.
Lattice Approximations of SPDEs with Two Reflecting Walls
An approximation scheme for stochastic partial differential equations with two reflecting walls h1,h2,driven by space-time white noise is studied.The lattice approximation scheme is used to study the convergence.A reflected SDE system is constructed to approximate the stochastic partial differential equations.Furthermore,a two-stage approximation method is applied to study the strong convergence of the scheme.A numerical scheme for reflected SPDE is also established.

stochastic partial differential equation with reflectiondeterministic obstacle problemsSkorohod-type problems on time-dependent domainsconvergence in the sense of distributions

周杰

展开 >

南开大学数学科学学院,天津 300071

反射随机偏微分方程 确定性障碍问题 独立时间区域Skorohod型问题 依分布收敛

2024

南开大学学报(自然科学版)
南开大学

南开大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.284
ISSN:0465-7942
年,卷(期):2024.57(3)
  • 13