首页|不含三角形和(P)5的定向图的染色数

不含三角形和(P)5的定向图的染色数

扫码查看
证明了不含5个顶点的导出有向路和不含三角形的定向图的染色数是有界的;此外,当D是一个含有汇点(或源点)的围长至少为5的定向图,且不含P+(1,2,1),P+(1,3),P-(1,2,1)或P-(1.3)作为导出子图,证明了 D的染色数是有界的.在定向图的染色领域,Aboulker、Charbit和Naserasr提出了猜想:对于任意的定向森林(F),不含导出F的定向图的染色数是有界的.这些结果为该猜想的正确性提供了一定的支持.
The Bounds of Dichromatic Numbers of((P)5,Triangle)-Free Digraphs
It's proved that the oriented graphs with no induced directed path on five vertices and no triangle have bounded dichromatic number.And further,let D be an oriented graph with a sink(or source)vertex and girth at least 5.If D contains no P+(1,2,1),P+(1,3),P-(1,2,1),or P-(1,3)as an induced subgraph,then it has a bounded dichromatic number.Aboulker et al.gave the following conjecture:For any oriented forest F,any graph contains no F as an induced subgraph has bounded dichromatic number.The above results give some small supports for the conjecture of Aboulker et al.

dichromatic numberoriented graphoriented forest

刘祥洲、岳军

展开 >

天津工业大学数学科学学院,天津 300387

染色数 定向图 定向森林

2024

南开大学学报(自然科学版)
南开大学

南开大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.284
ISSN:0465-7942
年,卷(期):2024.57(4)