基于变体马尔可夫博弈的自动引导车任务协同处理
Cooperative Processing of Tasks for Automatic Guided Vehicles Based on Variant Markov Game
赵鹏瑞 1任建伟 1王青 1冯晨曦1
作者信息
- 1. 内蒙古大学交通学院,呼和浩特 010070
- 折叠
摘要
为了提高转运仓库的转运效率,提出了一种基于变体马尔可夫博弈的自动引导车任务协同处理(VMG-AGV任务协同处理)方法.在利用FlexSim构建转运仓库模型的基础上对ProcessFlow、全局表、任务分配器、AGV等组件或实体进行参数、脚本设计,将VMG-AGV任务协同处理方法与传统的"一车带一物"拣选方法进行对比实验.仿真结果表明:新方法与传统方法相比,4辆AGV的平均利用率提高了11%,在制品平均运输量提高了 40%,4台出库合成器平均每小时增加出库4.5单.
Abstract
In order to improve the transfer efficiency of the transfer warehouse,a method of automatic guided vehicle task cooperative processing(VMG-AGV task cooperative processing)based on variant Markov game is proposed.Based on FlexSim,parameters and scripts of Process-Flow,global table,task distributor,AGV and other components or entities are designed,and the VMG-AGV task collaborative processing method is compared with the traditional"one cart with one object"picking method.The simulation results show that compared with the traditional meth-od,the average utilization rate of four AGVs is increased by 11%,the average delivery rate of four synthesizers is increased by 4.5 per hour,and the average transport volume of products in process is increased by 40%.
关键词
物流工程/任务协同处理/FlexSim/AGV系统/多智能体/仿真模拟Key words
logistics engineering/task collaborative processing/FlexSim/AGV system/multi-agent/simulation引用本文复制引用
基金项目
国家自然科学基金(71862026)
内蒙古高等学校青年科技英才支持计划(NJYT22095)
出版年
2024