一类不连续不定Sturm-Liouville算子的自共轭性
Self-Adjointness of a Class of Discontinuous and Indefinite Sturm-Liouville Operators
甄国华 1姚斯琴 1李润梅1
作者信息
- 1. 内蒙古大学数学科学学院,呼和浩特 010021
- 折叠
摘要
该文研究了一类首项系数与权函数均多次变号且带有转移条件的Sturm-Liouville算子的自共轭性.建立新的完备不定度规空间K,将所研究的Sturm-Liouville问题转化为对新算子A的研究,证明了算子A的自共轭性.
Abstract
The self-adjointness of a class of Sturm-Liouville operators with multiple sign changes and transition conditions for both the first term coefficient and weight function is investigated.Establish a new complete indefinite metric space K,transform the Sturm-Liouville problem studied into the study of the new operator A,and prove the self-adjointness of operator A.
关键词
不定Sturm-Liouville算子/边界条件/转移条件/自共轭性Key words
indefinite Sturm-Liouville operator/boundary condition/transmission condition/self-adjointness引用本文复制引用
基金项目
国家自然科学基金项目(11801286)
内蒙古自然科学基金项目(2018MS01021)
出版年
2024