矩阵对偶Core-EP逆性质的进一步研究
Further Study on the Dual Core-EP Inverse Properties of Matrices
魏佳艺 1海国君 1阿拉坦仓2
作者信息
- 1. 内蒙古大学数学科学学院,呼和浩特 010021
- 2. 内蒙古师范大学数学科学学院,呼和浩特 010022
- 折叠
摘要
利用矩阵的Drazin逆以及Moore-Penrose逆描述了对偶Core-EP逆,并应用矩阵的Core-EP分解给出了对偶Core-EP逆的分块矩阵表达.受到EP矩阵的启发,得到了矩阵是k次对偶Core-EP矩阵的充要条件,并得到了一些矩阵为k次对偶Core-EP矩阵的结论.
Abstract
The dual Core-EP inverse is described using the Drazin inverse of the matrix as well as the Moore-Penrose inverse.Applying the Core-EP decomposition of matrix,a block matrix expres-sion of the dual Core-EP is given.Inspired by the EP matrix,the necessary and sufficient conditions are obtained that the matrix is a k-degree dual Core-EP matrix and conclusion is given that some matrices are k-degree dual Core-EP matrix.
关键词
广义逆/Moore-Penrose逆/Drazin逆/对偶Core-EP逆/Core-EP分解Key words
generalized inverse/Moore-Penrose inverse/Drazin inverse/dual Core-EP inverse/Core-EP decomposition引用本文复制引用
基金项目
国家自然科学基金项目(11761052)
无穷维哈密顿系统及其算法应用教育部重点实验室开放课题项目(2023KFZD01)
出版年
2024