首页|基于上下文聚合残差的双阶段壁画图像修复

基于上下文聚合残差的双阶段壁画图像修复

扫码查看
壁画图像修复是指对壁画图像中损坏或缺失的区域进行修复,以恢复图像的视觉外观。针对现有的图像修复方法对壁画图像的修复纹理效果不清晰、模糊及特征信息提取不足的问题,本文提出了一个基于两阶段的上下文聚合残差对抗网络壁画图像修复模型。该模型由结构重建网络和颜色校正网络组成串行网络,并通过上下文聚合残差模块提取图像修复的全局和局部特征信息。结构重建网络中,利用线条图和自注意力模块保持结构稳定性和全局性。颜色校正网络中,利用压缩-激发通道注意力模块提高图像通道间传递信息的权重影响,从而减少颜色偏差。将本文提出的方法在壁画图像数据集上进行实验,实验表明本文方法在定性和定量分析上均优于所对比的方法。
Two-Stage Mural Image Restoration with Contextual Aggregation Residuals
Mural image restoration refers to the process of repairing damaged or missing areas in mural images to restore the visual appearance of the image.Addressing issues such as low efficacy and insufficient feature information extraction in existing image restoration methods for mural ima-ges,this paper proposes a two-stage context-aggregated residual adversarial network model for mural image restoration.The entire model consists of a serial network composed of a structure reconstruction network and a color correction network,leveraging context-aggregated residual blocks to extract global and local feature information for image restoration.In the structure recon-struction network,line drawings and self-attention modules are employed to maintain structural sta-bility and global coherence.In the color correction network,SE channel attention modules are uti-lized to enhance the weight influence of inter-channel information transmission,thereby reducing color deviations.Experimental results on a mural image dataset demonstrate that the proposed method outperforms existing restoration methods in both qualitative and quantitative analyses.

deep learningmural restorationcontextual aggregation residualsglobal-local fea-ture

冉娅琴、张乾

展开 >

贵州民族大学数据科学与信息工程学院,贵阳 550025

贵州省模式识别与智能系统重点实验室,贵阳 550025

深度学习 壁画图像修复 上下文聚合残差 全局和局部特征

贵州民族大学校级科研项目贵州民族大学青年项目

GZMUZK[2021]YB23GZMUZK[2023]QN10

2024

内蒙古大学学报(自然科学版)
内蒙古大学

内蒙古大学学报(自然科学版)

CSTPCD
影响因子:0.346
ISSN:1000-1638
年,卷(期):2024.55(4)