首页|一类矩形中厚板模型屈曲与振动问题的辛解析解

一类矩形中厚板模型屈曲与振动问题的辛解析解

扫码查看
从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解。首先,通过适当的变换将该模型转化为Hamilton系统,得到了 Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6种不同边界条件下的Mindlin板和Pasternak型双参数弹性地基的矩形中厚板的振动及屈曲问题进行了数值模拟。数据对比显示了本文模型的正确性和辛方法的有效性。
Symplectic Analysis Solutions for Buckling and Vibration Problems of a Class of Rectangular Moderately Thick Plate Models
A class of rectangular moderately thick plate models was abstracted from the practical mechanics problems and solved by the symplectic system method.Firstly,the model was trans-formed into a Hamiltonian system through appropriate transformations.Then,the eigenvalues and eigenfunction systems of the Hamiltonian operator were obtained.The completeness of the eigen-function systems was verified to give a general solution for the two opposite edges simply suppor-ted.Finally,the vibration and buckling problems of Mindlin plates and rectangular moderately thick plates on Pasternak-type two-parameter elastic foundations were considered under six different boundary conditions,and the data comparisons showed the correctness of the proposed model and the effectiveness of the symplectic method.

rectangular moderately thick platesymplectic methodHamiltonian operatorfree vibrationbuckling load

吴美慧、侯国林

展开 >

内蒙古大学数学科学学院,呼和浩特 010021

矩形中厚板 辛方法 Hamilton算子 自由振动 屈曲载荷

国家自然科学基金项目国家自然科学基金项目内蒙古自然科学基金项目

12261064118610482021MS01004

2024

内蒙古大学学报(自然科学版)
内蒙古大学

内蒙古大学学报(自然科学版)

CSTPCD
影响因子:0.346
ISSN:1000-1638
年,卷(期):2024.55(5)