内蒙古大学学报(自然科学版)2024,Vol.55Issue(5) :483-495.DOI:10.13484/j.nmgdxxbzk.20240505

一类矩形中厚板模型屈曲与振动问题的辛解析解

Symplectic Analysis Solutions for Buckling and Vibration Problems of a Class of Rectangular Moderately Thick Plate Models

吴美慧 侯国林
内蒙古大学学报(自然科学版)2024,Vol.55Issue(5) :483-495.DOI:10.13484/j.nmgdxxbzk.20240505

一类矩形中厚板模型屈曲与振动问题的辛解析解

Symplectic Analysis Solutions for Buckling and Vibration Problems of a Class of Rectangular Moderately Thick Plate Models

吴美慧 1侯国林1
扫码查看

作者信息

  • 1. 内蒙古大学数学科学学院,呼和浩特 010021
  • 折叠

摘要

从实际力学问题出发抽象出一类矩形中厚板模型,并用辛体系方法进行求解.首先,通过适当的变换将该模型转化为Hamilton系统,得到了 Hamilton算子的本征值和本征函数系,并证明了本征函数系的完备性,进而给出对边简支情形的一般解,最后对6种不同边界条件下的Mindlin板和Pasternak型双参数弹性地基的矩形中厚板的振动及屈曲问题进行了数值模拟.数据对比显示了本文模型的正确性和辛方法的有效性.

Abstract

A class of rectangular moderately thick plate models was abstracted from the practical mechanics problems and solved by the symplectic system method.Firstly,the model was trans-formed into a Hamiltonian system through appropriate transformations.Then,the eigenvalues and eigenfunction systems of the Hamiltonian operator were obtained.The completeness of the eigen-function systems was verified to give a general solution for the two opposite edges simply suppor-ted.Finally,the vibration and buckling problems of Mindlin plates and rectangular moderately thick plates on Pasternak-type two-parameter elastic foundations were considered under six different boundary conditions,and the data comparisons showed the correctness of the proposed model and the effectiveness of the symplectic method.

关键词

矩形中厚板/辛方法/Hamilton算子/自由振动/屈曲载荷

Key words

rectangular moderately thick plate/symplectic method/Hamiltonian operator/free vibration/buckling load

引用本文复制引用

基金项目

国家自然科学基金项目(12261064)

国家自然科学基金项目(11861048)

内蒙古自然科学基金项目(2021MS01004)

出版年

2024
内蒙古大学学报(自然科学版)
内蒙古大学

内蒙古大学学报(自然科学版)

CSTPCD
影响因子:0.346
ISSN:1000-1638
段落导航相关论文