首页|乳腺癌空间转录组数据集上基于深度学习的EnST算法研究

乳腺癌空间转录组数据集上基于深度学习的EnST算法研究

EnST algorithm based on deep learning on breast cancer spatial transcriptome dataset

扫码查看
在保留空间位置和组织学图像的基础上,空间转录组学使用基因表达谱数据对组织结构和生物发育提出新的见解.准确识别位点的空间域是空间转录组学各种下游分析的重要步骤,提出的EnST算法在运用复合缩放网络的基础上,添加了变分图自编码器,能够在空间转录组数据中提取有用信息.在人类乳腺癌空间转录组学数据集中,相比于其他算法,EnST算法可以更好地描绘乳腺癌精细的空间组织结构.此外,EnST学习到的表征在聚类、可视化、差异基因表达分析、GO功能分析等下游任务中也展现出强大的性能.
Based on preserving spatial location and histological images,the spatial transcriptome can provide new insights into tissue structure and organism development with the data of gene expression profile.To precisely identify the spatial domain of loci is an important step in various downstream analyses of spatial transcriptome.The proposed EnST algorithm adds a variogram self-encoder based on the use of composite scaling networks,which can extract useful information in spatial transcriptome data.In the spatial transcriptome dataset of human breast cancer,the EnST algorithm can made a better description on the fine spatial organization structure of breast cancer in comparison with other seven algorithms.In addition,the representations learned by EnST showed a powerful performance on the downstream tasks of clustering,visualization,differential gene expression analysis and GO function analysis.

deep learningvariational graph autoencoderbreast cancerspatial domainclustering

赵雅楠、尹娜、司志好、尚文婧、冯振兴

展开 >

内蒙古工业大学 理学院,呼和浩特 010051

深度学习 变分图自编码器 乳腺癌 空间域 聚类

内蒙古自治区自然科学基金

2019BS03025

2024

内蒙古工业大学学报(自然科学版)
内蒙古工业大学

内蒙古工业大学学报(自然科学版)

影响因子:0.176
ISSN:1001-5167
年,卷(期):2024.43(3)
  • 7