首页|无人机多光谱影像支持下的云南思茅松林虫害监测反演探究

无人机多光谱影像支持下的云南思茅松林虫害监测反演探究

扫码查看
本研究通过无人机搭载的多光谱成像系统,采集云南省墨江哈尼族自治县思茅松林区域的多光谱影像,借助遥感影像处理技术及地面实测数据,构建了随机森林和支持向量机两种机器学习模型,对松林虫害发生情况进行准确分析及预测.结果显示:这两种模型均展现出有效的虫害区域识别与预测能力,AUC值均在0.9以上,其中,随机森林模型在准确率方面表现更为出色,其训练集准确率为97.14%,测试集准确率可达89.16%;经计算,随机森林模型和支持向量机模型预测的研究区虫害发生面积分别为224 264.135 m2和212 078.258m2,随机森林反演准确率为92.86%,支持向量机反演准确率为87.82%,反演效果整体良好.
Monitoring Inversion of Insect Damage in Simao Pine Forests in Yunnan Supported by UAV Multispectral Imagery
This study collected multispectral imagery of the Simao pine forest area in Mojiang Hani Autonomous County,Yunnan Province,using a UAV-mounted multispectral imaging system.With the aid of remote sensing image processing techniques and ground measurement data,two machine learning models,Random Forest and Support Vector Machine,were constructed to accurately analyze and predict the occurrence of pine forest insect damage.The results showed that both models effectively identified and predicted insect damage areas with AUC values above 0.9.The Random Forest model demonstrated superior accuracy,with a training set accuracy of 97.14%and a test set accuracy of 89.16%.The predicted areas of insect damage in the study area by the Random Forest and Support Vector Machine models were 224 264.135 m2 and 212 078.258 m2,respectively.The inversion accuracy of the Random Forest model was 92.86%,and that of the Support Vector Machine model was 87.82%,indicating overall good inversion effects.

UAVmultispectral imagerySimao pine forestinsect damage monitoringinversion

柳德胜

展开 >

墨江哈尼族自治县森林和草原资源监测管理站,云南墨江 654800

无人机 多光谱影像 思茅松林 虫害监测 反演

2024

内蒙古林业调查设计
内蒙古自治区森林经理学会 内蒙古自治区林业监测规划院 内蒙古自治区第二林业监测规划院 内蒙古自治区大兴安岭森林调查设计规划院

内蒙古林业调查设计

影响因子:0.228
ISSN:1006-6993
年,卷(期):2024.47(5)