首页|基于 CNN-LSTM的钻井泵液力端故障诊断方法研究

基于 CNN-LSTM的钻井泵液力端故障诊断方法研究

扫码查看
钻井泵液力端工作环境复杂,容易发生故障,传统故障诊断方法难以满足钻井现场需求.针对五缸式钻井泵,开展了基于深度神经网络的钻井泵液力端故障诊断研究,设计了 CNN-LSTM故障诊断模型结构,研究了 LSTM对故障诊断模型性能影响.结果表明,提出的CNN-LSTM模型实现了钻井泵液力端多种工况下9类故障快速准确诊断,通过引入LSTM结构,将故障诊断准确率提升了 7.85%,达到了 97.67%.因此提出的CNN-LSTM故障诊断模型可为钻井现场提供一种高效准确的钻井泵液力端故障诊断方法.
Study on CNN-LSTM Based Fault Diagnosis Method for Drilling Pump Fluid Ends
Under complex working conditions,it is easy to lead to a failure at the drilling pump fluid end.Traditional fault diagnosis methods are difficult to meet the requirements of the drilling process.In this paper,aiming at the fault diagnosis of five-cylinder drilling pumps,a deep neural network-based fluid end fault diagnosis research was carried out,a CNN-LSTM fault diagnosis model structure was designed,and the effect of LSTM on the performance of the fault diagnosis model was investigated.The results show that the CNN-LSTM model proposed in this paper realizes fast and accurate diagnosis of 9 types of faults under multiple working conditions at the drilling pump fluid end,and by applying the LSTM structure,the accuracy of fault diagnosis model is improved by 7.85%to 97.67%.The CNN-LSTM fault diagnosis model proposed in this paper provides an efficient and accurate fault diagnosis method for the drilling pump fluid end of the drilling process.

drilling pump fluid endFault diagnosisVibration signalLeakageDiffusion

单代伟、朱骅、张芳芳

展开 >

四川宏华石油设备有限公司,四川 广汉 608300

成都理工大学油田气藏地质及开发工程国家重点实验室,四川 成都 610059

钻井泵液力端 故障诊断 振动信号 CNN-LSTM

2024

内蒙古石油化工
内蒙古石油化工研究院 内蒙古化工学会 内蒙古化学学会 内蒙古石油学会

内蒙古石油化工

影响因子:0.15
ISSN:1006-7981
年,卷(期):2024.50(3)
  • 16