首页|融合自监督学习的动画单帧图像绝对相位恢复方法

融合自监督学习的动画单帧图像绝对相位恢复方法

A Method for Absolute Phase Recovery of Animated Single Frame Images Using Self Supervised Learning Fusion

扫码查看
为解决以往仅对获取的动画单帧图像进行灰度化处理而导致方法的恢复效果不佳问题,设计一种融合自监督学习的动画单帧图像绝对相位恢复方法.从多个网站获取动画单帧图像,并对图像进行灰度化处理、平滑处理、图像增强和归一化处理,由此构建动画单帧图像数据集.在自监督学习的作用下,对动画单帧图像进行变换,并计算图像激活函数,提取不同变换状态下的图像特征,通过获取动画单帧图像的相位信息,构建对应的图像绝对相位恢复模型.最后对模型进行求解,并对求解结果进行映射,实现对动画单帧图像绝对相位的恢复.在实验测试中,和以往的动画单帧图像绝对相位恢复方法相比,设计的融合自监督学习的动画单帧图像绝对相位恢复方法在实际应用中峰值信噪比较高,恢复效果较好.
Previous methods for absolute phase restoration of single frame animated images have poor restoration performance due to only grayscale processing of the obtained single frame animated images.Therefore,a method for absolute phase recovery of animation sin-gle frame images was designed that integrates self supervised learning.Animated single frame images are obtained from multiple websites,and perform grayscale processing,smoothing processing,image enhancement,and normalization on the images to construct an animated single frame image dataset.Under the action of self supervised learning,transform the animated single frame images,calculate the image activation function,extract image features under different transformation states,and obtain phase information of the animated single frame images,construct a corresponding image absolute phase recovery model,solve the model,and map the solution results to achieve absolute phase recovery of a single animation frame image.In experimental testing,compared with previous methods for absolute phase recovery of animation single frame images,the designed animation single frame image absolute phase recovery method that integrates self supervised learning has a higher peak signal-to-noise ratio and better recovery effect in practical applications.

fusion self supervised learninganimated single frame imageabsolute phaseimage restorationrecovery methods

孟祥嘉

展开 >

安徽建筑大学 艺术学院动画系,安徽 合肥 230601

融合自监督学习 动画单帧图像 绝对相位 图像恢复 恢复方法

2024

武夷学院学报
武夷学院

武夷学院学报

影响因子:0.28
ISSN:1674-2109
年,卷(期):2024.43(12)