首页|支持向量机与Lasso-Logistic回归的上市公司财务舞弊识别分析

支持向量机与Lasso-Logistic回归的上市公司财务舞弊识别分析

扫码查看
文章选取 2010-2023 年因财务舞弊行为被处罚的 220 家公司作为研究对象,基于支持向量机算法构建财务舞弊识别模型,在此基础上运用Lasso回归分析影响财务舞弊的核心因素,并采用Logisitc回归进一步分析财务舞弊影响因素的不同作用程度.研究发现资产负债率、年龄、每股投资活动现金现流量对财务舞弊发生概率有正向影响,而总资产净利润率有负向影响.因此,上市公司健全内控制度时应重点关注并控制这些指标.同时,监管机构也应关注这些指标并善于利用舞弊模型来提升财务舞弊的识别效果.而国家应积极推动各监管机构形成信息共享机制,不断更新舞弊模型的输入变量,以获得更好的预测效果.
Financial Fraud Identification of Listed Companies Based on Support Vector Machine and Lasso-Logistic Regression
220 companies punished for financial fraud from 2010 to 2023 are selected as the research objects.First,a financial fraud identification model is constructed based on the support vector machine algorithm.On this basis,Lasso regression is used to analyze the core factors affecting financial fraud,and Logisitc regression is used to further analyze the different degrees of influence of financial fraud.It is found that asset-liability ratio,age and investment cash flow have a positive impact on the probability of financial fraud,while the net profit rate of total assets has a negative impact.Therefore,listed companies should focus on and control these indicators when improving their internal control system.At the same time,regulators should also pay attention to these indicators and be good at using fraud models to improve the identification effect of financial fraud.The state should actively promote the formation of information sharing mechanism a-mong various regulatory agencies,and constantly update the input variables of fraud models in order to obtain better forecasting results.

financial fraudsupport vector machineLasso-Logistic regressionlisted companies

曾碧钗

展开 >

闽南理工学院,福建 石狮 362700

财务舞弊 支持向量机 Lasso-Logistic回归 上市公司

2024

武夷学院学报
武夷学院

武夷学院学报

影响因子:0.28
ISSN:1674-2109
年,卷(期):2024.43(12)