内燃机工程2024,Vol.45Issue(6) :60-70.DOI:10.13949/j.cnki.nrjgc.2024.06.007

基于神经网络的柴油机活塞环组窜气量预测方法研究

Study on the Prediction Method of Diesel Engine Piston Ring Pack Blow-by Based on Neural Network

吴玥 梁兴雨 屠丹红
内燃机工程2024,Vol.45Issue(6) :60-70.DOI:10.13949/j.cnki.nrjgc.2024.06.007

基于神经网络的柴油机活塞环组窜气量预测方法研究

Study on the Prediction Method of Diesel Engine Piston Ring Pack Blow-by Based on Neural Network

吴玥 1梁兴雨 1屠丹红2
扫码查看

作者信息

  • 1. 天津大学 先进内燃动力全国重点实验室,天津 300072
  • 2. 中船动力研究院有限公司,上海 200129
  • 折叠

摘要

针对发动机中出现密封不严而造成的发动机动力性和经济性下降及重要零部件损坏的现象,以某柴油机的单缸试验机为研究对象,对活塞环组的密封性能进行仿真计算,针对开口间隙、倒角长度、径向弹力、工作温度等 5 个输入和窜气量 1 个输出,建立窜气量反向传播神经网络(back propagation neural network,BPNN)预测模型,并通过灰狼优化(grey wolf optimization,GWO)算法、鲸鱼优化算法(whale optimization algorithm,WOA)、遗传算法(genetic algorithm,GA)、粒子群优化(particle swarm optimization,PSO)算法进行优化,提高模型的预测性能.结果表明,粒子群优化-反向传播(particle swarm optimiation-back propagation,PSO-BP)预测模型对窜气量具有较强的泛化能力和预测性能.PSO-BP预测模型的高准确性和稳定性为发动机设计和维护提供了强有力的决策支持工具,有助于实现更精确的故障诊断和预测性维护,降低运营成本,提高发动机的整体性能和经济效益.

Abstract

In response to the phenomenon of poor sealing in the engine,which leads to a decrease in engine power and economy,as well as damage to important components,a single cylinder test engine of a certain diesel engine was taken as the research object.The sealing performance of the piston ring pack was simulated and calculated.A back propagation neural network(BPNN)prediction model for gas leakage was established for five inputs including opening clearance,chamfer length,radial elasticity,working temperature,and one output of blow-by.Four algorithms were used to improve the prediction performance of the model,namely grey wolf optimization(GWO),whale optimization algorithm(WOA),genetic algorithm(GA),and particle swarm optimization(PSO).The results indicate that the PSO-BP prediction model has strong generalization ability and predictive performance for blow-by.The high accuracy and stability of the particle swarm optimization-back propagation(PSO-BP)prediction model provide a powerful decision support tool for engine design and maintenance,helping to achieve more accurate fault diagnosis and predictive maintenance,reduce operating costs,and improve the overall performance and economic benefits of the engine.

关键词

柴油机/活塞环组/窜气量/预测模型/粒子群优化

Key words

diesel engine/piston ring pack/blow-by/prediction model/particle swarm optimization(PSO)

引用本文复制引用

出版年

2024
内燃机工程
中国内燃机学会

内燃机工程

CSTPCD北大核心
影响因子:0.601
ISSN:1000-0925
段落导航相关论文