首页|基于活塞式反应器的氨在线制氢研究

基于活塞式反应器的氨在线制氢研究

扫码查看
提出一种基于活塞式反应器原理的氨在线制氢方法并探究了其可行性。通过结合均质充量压燃反应器零维仿真模型并优化传热模型和氨热解机理,研究了氩摩尔分数、进气条件、压缩比和氧摩尔分数等参数对氨转化率和产氢率的影响,分析了关键参数对氨分解制氢的反应动力学影响机制。结果表明:初始温度和氧摩尔分数对氨分解制氢的影响最为显著。当初始温度从373 K提高到573 K时,氨转化率将提升80%,这主要是由于高温下关键基元反应速率的提升;当氧摩尔分数为0。024 8时,氨在线制氢量达到最高,这是由于关键基元反应NH+H=H2+N反应比的增加。此外,适当提高氩摩尔分数、降低转速、提高初始压力和压缩比对氨分解制氢也具有促进作用。通过适当设计和优化热化学边界条件,活塞式反应器有可能成为一种有效的氨在线制氢方法。
Research on On-Board Ammonia Decomposition into Hydrogen Based on Piston Reactors
A method for on-board ammonia decomposition into hydrogen,based on a piston reactor,was pro-posed and its feasibility was investigated.A zero-dimensional homogeneous charge compression ignition reactor model,incorporating an optimized heat transfer model and an ammonia pyrolysis mechanism,was employed to explore the impacts of argon mole fraction,intake conditions,compression ratio,and oxygen mole fraction on ammonia conversion rate and hydrogen production rate.The role of key parameters in ammonia decomposition into hydrogen was analyzed through chemical kinetics.The results indicate that the initial temperature and oxygen mole fraction exert the most significant influence on ammonia decomposition into hydrogen.An increase in the initial temperature from 373 K to 573 K can enhance ammonia conversion rate by 80%,primarily due to the heightened reaction rate of key elements at high temperatures.The maximum level of ammonia decomposition into hydrogen is achieved when the mole fraction of oxygen reaches 0.024 8,mainly influenced by the alteration of the reaction ra-tio in the NH+H=H2+N elemental reaction.Furthermore,appropriate increases in argon mole fraction,decreases in engine speed,and elevations in initial pressure and compression ratio positively impact ammonia de-composition into hydrogen.Through the design and optimization of thermochemical boundary conditions,the pis-ton reactor can serve as an effective technology for on-board ammonia decomposition into hydrogen.

piston reactoron-board ammonia decomposition into hydrogenthermochemical boundary conditions

万思萌、潘家营、郭颖莹、卫海桥、舒歌群

展开 >

天津大学先进内燃动力全国重点实验室,天津 300350

活塞式反应器 氨在线制氢 热化学边界

2024

内燃机学报
中国内燃机学会

内燃机学报

CSTPCD北大核心
影响因子:0.76
ISSN:1000-0909
年,卷(期):2024.42(6)