首页|水文序列突变点识别方法比较研究

水文序列突变点识别方法比较研究

扫码查看
水文序列突变点的识别是研究水文序列突变特征的重要环节, 对水文分析和水文模拟预测意义重大.选取了目前国内外较为常用的9种水文序列突变点识别方法, 即累积距平法、Mann-Kendall检验法 (M-K) 、有序聚类分析法、双累积曲线法、Pettitt法、BFAST法、水文情势突变法 (RSI) 、Lee-Heghinian法和Yamamoto法, 采用黄河中游头道拐站和龙门站1960-2016年的57年长时间序列输沙数据, 对比分析各种方法的适用性及准确性.结果表明:累积距平法、有序聚类分析法、双累积曲线法和Lee-Heghinian法能够较准确地获取输沙序列突变点, RSI和Pettitt检验法的适用性最好 (p<0.01), M-K检验法次之 (p<0.05), Yamamoto法最差;BFAST法不仅能够识别月尺度水文序列的突变点, 也可用于解析其阶段性变化趋势.
Comparison study on hydrological time series change-point testing methods
Identification of the change-point of hydrological time series is important to hydrological analysis and prediction. Nine commonly used methods were selected in this study to identify the change points of the sediment load time series at Toudaoguai and Longmen stations from 1960 to 2016, including cumulative anomaly, Mann-Kendall test (M-K), order cluster analysis, double mass curve, Pettitt test, BFAST, Regime Shift Index (RSI), Lee-Heghinian and Yamamoto method. The applicability and accuracy of various methods were compared and analyzed. Results show that cumulative anomaly, order cluster analysis, double mass curve and Lee-Heghinian can accurately identify abrupt change points in sediment load data. The RSI and Pettitt exhibited best performance (p<0.01), and M-K performed well (p<0.05), whereas the Yamamoto method wasn't so good (p<0.05). BFAST can be used to identify breakpoints, as well to analyze the seasonal changes of the monthly hydrological series.

hydrological serieschange-pointtesting methodsmiddle reach of Yellow River

田小靖、赵广举、穆兴民、胡晋飞

展开 >

西北农林科技大学 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西 杨凌 712100

中国科学院-水利部 水土保持研究所,陕西 杨凌 712100

水文序列 突变点 识别方法 黄河中游

国家重点研发计划项目国家自然科学基金国家自然科学基金

2016YFC04024014167127941671285

2019

泥沙研究
中国水利学会

泥沙研究

CSTPCDCSCD北大核心
影响因子:0.817
ISSN:0468-155X
年,卷(期):2019.44(2)
  • 33
  • 9