首页|基于后门攻击的联邦学习恶意软件检测系统脆弱性分析

基于后门攻击的联邦学习恶意软件检测系统脆弱性分析

扫码查看
深度学习技术已成为恶意软件检测的核心技术之一,然而其依赖于集中式训练,需要定期更新数据库并进行重训练以应对恶意软件的不断演进。联邦学习作为一种新兴的分布式学习技术,通过在多个客户端本地训练分类模型并共享学习成果以构建全局模型,能有效保护数据隐私并适应恶意软件的多样化;但联邦学习由于其分布式的特性,易受到恶意客户端后门攻击的影响。针对上述问题,探讨了联邦学习在恶意软件检测中的脆弱性,分析了潜在的恶意攻击如标签反转攻击和模型投毒攻击,并在此基础上提出一种新型隐蔽的联邦自适应后门攻击(federat-ed adaptive backdoor attack,FABA)策略。该攻击策略充分利用联邦学习的特性,通过在客户端与中心服务器的交互过程中不断调整触发器,确保攻击效益最大化与隐蔽性。在Virus-MNIST和Malimg数据集上的测试结果显示,所提出的方法在保持隐蔽性的同时实现了 100%的攻击成功率,对干净样本的预测精度几乎无影响。此外,即使面对最新的防御机制,所提出的策略依然能保持高攻击成功率和隐蔽性。所使用的微小触发器(仅 9 个像素)和极低比例(3%)的恶意客户端展示了联邦学习在安全性方面的潜在风险,为未来的防御策略提供了重要参考。
Vulnerability analysis of federated learning malware detection systems based on backdoor attacks
Deep learning has become one of the core technologies for malware detection.However,it relies on centralized training,requiring regular updates to databases and retraining to cope with the continuous evolution of malware.Federated learning,an emerging distributed learning technology,addresses these issues by training classification models locally on multiple clients and sharing the learning outcomes to build a global model,thus effectively protecting data privacy and adapting to diverse malware.Despite these advantages,federated learning's distributed nature makes it vulnerable to backdoor attacks from malicious clients.This study investigates the vulnerabilities of federated learning in malware detection and analyzes potential malicious attacks such as label flipping attacks and model poisoning attacks.Based on this analysis,a novel covert federated adaptive backdoor attack(FABA)is proposed.This attack strategy exploits the characteristics of federated learning by continuously adjusting triggers du-ring client-server interactions to maximize attack effectiveness and concealment.Testing on the Virus-MNIST and Malimg datasets demonstrates that the proposed method achieves a 100%attack success rate while maintaining high levels of stealth,with almost no impact on the prediction accuracy of clean samples.Moreover,the proposed strategy retains high attack success rates and stealth even against the latest defense mechanisms.The use of tiny triggers(only 9 pixels)and a very low proportion of malicious clients(3%)highlights the potential security risks in federated learning and provides crucial insights for future defensive strategies.

federated learningbackdoor attackmalware detection

芦星宇、曹阳

展开 >

东南大学 网络空间安全学院,江苏 南京 211189

联邦学习 后门攻击 恶意软件检测

2024

南通大学学报(自然科学版)
南通大学

南通大学学报(自然科学版)

影响因子:0.292
ISSN:1673-2340
年,卷(期):2024.23(3)