首页|基于Faster RCNN的桥梁缺陷检测研究

基于Faster RCNN的桥梁缺陷检测研究

扫码查看
尽管近年来目标检测技术已取得显著进展,但在复杂环境中的多目标检测仍面临诸多挑战.针对Faster RCNN 模型在桥梁检测中遇到的问题,提出三点改进:通过采用 ResNet101 作为特征提取网络,取代传统的VGG16,以此缓解因网络深度增加而导致的信息传递衰减问题,提高特征学习的效率;通过引入递归特征金字塔结构,更有效地处理不同尺度的目标,从而增强检测性能;通过在模型中嵌入注意力机制,进一步强化模型对关键区域的识别能力并减少背景噪声的影响,使其能够更加聚焦于目标特征.经过改进,模型的准确率提升至 92.5%,平均精度达到 91.5%.
Research on Bridge Defects Detection Based on Faster RCNN
Although target detection technology has made significant progress in recent years,multi-target detection in complex environments still faces many challenges.To address the problems encountered by the Faster RCNN model in bridge detection,three aspects are proposed for improvement:by adopting ResNet101 as the feature extraction network instead of the traditional VGG16,it is to alleviate the problem of attenuation of in-formation transfer due to the increase in the depth of the network,and to improve the efficiency of feature learn-ing;by introducing a recursive feature pyramid structure,different scales of targets can be dealt with more effi-ciently,thus to enhance the detection performance;by embedding the attention mechanism in the model,it fur-ther strengthens the model's ability to recognize key regions and reduces the influence of background noise,so that it can focus more on target features.As a result of the improvements,the accuracy of the model was in-creased to 92.5%,with an average accuracy of 91.5%.

bridge defectstarget detectionFaster RCNN

杨洋、张华

展开 >

江苏航运职业技术学院 智能制造与信息学院,江苏 南通 226010

江苏航运职业技术学院 教育信息化管理中心,江苏 南通 226010

桥梁缺陷 目标检测 Faster RCNN

2024

江苏航运职业技术学院学报
南通航运职业技术学院

江苏航运职业技术学院学报

影响因子:0.289
ISSN:2097-0358
年,卷(期):2024.23(3)