首页|基于注意力和对比学习的轻量级交通标志检测方法

基于注意力和对比学习的轻量级交通标志检测方法

扫码查看
为提升交通标志检测精度和速度,针对交通标志目标小、尺度变化大等问题,提出一种基于注意力和对比学习的轻量级交通标志检测算法:首先,在特征提取主干网络中采用通道和空间分离方法依次进行卷积操作,构建多层次的特征提取网络,减少运算量;其次,采用基于注意力的上下文特征金字塔网络,获取目标的代表性特征,提升模型准确率;最后,采用监督对比学习损失(Supervised Contrastive Loss,SCL)函数,提高模型的特征判别能力.实验结果表明,该交通标志检测算法的平均检测精度达95.8%,相比于YOLOX-Tiny提升了4.5%,检测速度为79帧/s,能够满足实际应用需要.
Light-weight Traffic Sign Detection Algorithm Based on Attention and Contrastive Learning
To improve the accuracy and speed of traffic sign detection,a light-weight traffic sign detection algorithm based on attention and contrastive learning is proposed to address the issues such as small sizes and large-scale changes of traffic signs etc.Firstly,the channel and space separation method is used to do successive convolutions in the backbone network where features are extracted,and the network for multi-level feature extraction is built to reduce the amount of computation.Secondly,an attention-based contextual feature pyramid network is used to obtain representative features of target and improve the accuracy of the model.Finally,Supervised Contrastive Loss(SCL)is used to boost feature discrimination of the model.The experimental results show that the traffic sign detection algorithm achieves the average precision of 95.8%,4.5%higher than that of YOLOX-Tiny.The detection speed reaches 79 frames per second,which meets the need of practical applications.

traffic sign detectionfeature pyramidattentioncontrastive learningYOLOX-Tiny model

邵叶秦、王梓腾、张若为、胡彬、曹秋阳、周瑞、冯林威

展开 >

南通大学 交通与土木工程学院,江苏 南通 226019

南通大学 电气工程学院,江苏 南通 226019

南通大学 信息科学技术学院,江苏 南通 226019

南通大学 张謇学院,江苏 南通 226019

展开 >

交通标志检测 特征金字塔 注意力 对比学习 YOLOX-Tiny模型

国家自然科学基金面上项目

61671255

2024

南通职业大学学报
南通职业大学

南通职业大学学报

影响因子:0.366
ISSN:1008-5327
年,卷(期):2024.38(1)
  • 22