首页|面向社会性昆虫识别的知识迁移DenseNet后训练剪枝轻量化模型研究

面向社会性昆虫识别的知识迁移DenseNet后训练剪枝轻量化模型研究

扫码查看
在资源受限的设备上,如何快速有效地针对蜜蜂、蚂蚁等对生态系统产生重要影响的种群进行图像识别,具有重要的生态保护意义。本文采用DenseNet预训练模型,在蚂蚁蜜蜂小规模数据集上进行知识迁移,并利用非结构化后训练剪枝UPSCALE方法,构建了一个完整的架构。实验证明,该架构可以快速利用小规模数据集,以较高的识别精度实现目标图像识别,且模型参数不到基准方法的1/3,对于部署设备而言,具有更广泛的应用价值。
Research on Lightweight Model of Post-training Pruning of Knowledge-transferred DenseNet for Social Insects Identification
The rapid and effective identification of populations such as bees and ants,which have significant eco-logical impacts,on resource-constrained devices holds great ecological conservation significance.In this paper,a DenseNet pre-trained model is employed for knowledge transfer on a small-scale dataset of ants and bees,and an unstructured post-training pruning method known as UPSCALE is utilized to construct a comprehensive framework.Experimental results demonstrate that this framework can rapidly leverage small-scale datasets to achieve target image recognition with high accuracy,while the model parameters are less than one-third of those of the baseline method,thus providing broader application value for deployment on devices.

antsbeesDenseNettransfer learningpost-training pruning

王鑫、张文静、史伟、可乐乐

展开 >

宁夏大学 信息工程学院,宁夏 银川 750021

兰州职业技术学院 信息工程学院,甘肃 兰州 730070

蚂蚁 蜜蜂 DenseNet 迁移学习 后训练剪枝

国家自然科学基金资助项目国家自然科学基金资助项目甘肃省自然科学基金资助项目

621660301206105523JRRA1471

2024

宁夏大学学报(自然科学版)
宁夏大学

宁夏大学学报(自然科学版)

CSTPCD
影响因子:0.377
ISSN:0253-2328
年,卷(期):2024.45(3)
  • 2