首页|基于门控卷积网络和自注意力网络的联合实体关系抽取

基于门控卷积网络和自注意力网络的联合实体关系抽取

扫码查看
实体关系抽取是自然语言处理领域的一个重要任务,其目的是识别文本实体中的目标关系,为知识图谱等下游任务提供结构化数据,近年来得到了广泛关注及持续创新。目前相关实体关系抽取方法的性能已显著提升,如基于潜在关系和全局对应的实体关系抽取方法(PRGC),通过先引入关系判断模块,从而有效解决了关系识别存在冗余操作的问题,但该方法仍存在词特征信息不够丰富,模型泛化能力不强等问题。以PRGC为参考基准,本文提出了一种基于门控卷积网络(GCN)和自注意力网络的联合实体关系抽取方法(EREGS),在编码阶段结合GCN,有效捕获远距离实体特征并学习到更加抽象的特征表示,使模型能够更好地理解文本的语义信息,从而增强特征的提取能力和跨领域的泛化能力。在解码器部分,利用自注意神经网络,帮助模型正确捕捉实体间的关联性,从而提升关系判别的准确性。实验结果表明,本文所构建的模型在NYT语料库和WEBNLG语料库两个通用数据集上的F1值分别达到了93。7%和90。8%,优于所对比的联合实体关系抽取的基线模型。同时,本文在自建的胶质瘤医学数据集GMD上进行了实验验证,结果表明,该模型在医学专用领域也展现出较优的性能和泛化能力。
Joint Entity Relation Extraction Based on Gated Convolutional Neural Networks and Self-attention Networks
Entity relation extraction is an important task in the field of natural language processing.Its goal is to identify the target relationships in text,thus providing structured data for downstream tasks such as knowledge graphs.In recent years,it has gained widespread attention continuous innovation.The performance of current entity relation extraction methods has significantly improved,such as the method based on potential relations and global correspondences(PRGC),which effectively addresses the redundancy in relation identification by introducing a relation judgment module.However,this method still faces challenges,including insufficient rich-ness of word feature information and limited model generalization capability.Referencing PRGC as a baseline,a joint entity relation extraction method based on Gated Convolutional Networks(GCN)and Self-Attention Networks(EREGS)is proposed in this paper.During the encoding phase,GCN is combined to effectively cap-ture long-distance entity features and learn more abstract feature representations,enabling the model to better understand the semantic information of the text and thereby enhancing feature extraction capabilities and cross-domain generalization.In the decoder section,a self-attention neural network is utilized to assist the model in accurately capturing the correlations between entities,thus improving the accuracy of relation discrimination.Experimental results demonstrate that the constructed model achieves F1 scores of 93.7% and 90.8% on the NYT and WEBNLG general datasets,respectively,surpassing the baseline models for joint entity relation extraction.Additionally,experiments were conducted on a self-built glioma medical dataset(GMD),indicat-ing that the model also exhibits superior performance and generalization ability in the medical domain.

entity relation extractiongated convolutional neural networkself-attention network

王梦涛、杜方、王美静、李婷

展开 >

宁夏大学 信息工程学院,宁夏 银川 750021

宁夏"东数西算"人工智能与信息安全重点实验室,宁夏 银川 750021

宁夏大学 数学统计学院,宁夏 银川 750021

实体关系抽取 门控卷积网络 自注意力网络

国家自然科学基金资助项目宁夏重点研发计划(重点)项目宁夏自然科学基金资助项目

620620582023BEG020092021AAC03022

2024

宁夏大学学报(自然科学版)
宁夏大学

宁夏大学学报(自然科学版)

CSTPCD
影响因子:0.377
ISSN:0253-2328
年,卷(期):2024.45(3)
  • 1