首页|基于CNN-Transformer半监督交叉学习的遥感图像场景分类方法

基于CNN-Transformer半监督交叉学习的遥感图像场景分类方法

扫码查看
随着深度学习技术的发展,基于卷积神经网络(CNN)和Transformer的深度学习方法在全监督遥感图像场景分类任务中得到了广泛的关注与研究。然而,如何在标注样本有限的情况下实现良好的分类性能仍然具有挑战。考虑到CNN和Transformer在深度特征提取方式上的差异,提出一种CNN和Transformer半监督交叉学习的遥感图像场景分类方法(SCL-CTNet),通过构建CNN和Transformer输出的一致性约束,更好地提取未标记数据中的信息,指导模型训练。半监督交叉学习方法将弱增强图像在一个网络上的输出作为伪标签用于监督强增强图像在另一个网络的预测结果,充分利用未标记样本的局部-全局信息,鼓励两个网络对相同输入图像预测间的一致性,提高模型泛化性。使用自适应阈值筛选伪标签,提高伪标签可靠性。在AID和NWPU-RESISC45数据集上的实验结果证明了所提出方法的有效性。
A Remote Sensing Image Scene Classification Based on CNN-Transformer Semi-Supervised Cross Learning
With the development of deep learning technology,deep learning methods based on Convolutional Neural Networks(CNN)and Transformers have received extensive attention and research in fully supervised remote sensing image scene classification tasks.However,achieving good classification performance with lim-ited labeled samples remains challenging.Considering the differences in deep feature extraction methods between CNN and Transformers,a semi-supervised cross-learning method for remote sensing image scene clas-sification(SCL-CTNet)was proposed.By constructing consistency constraints on the outputs of CNN and Transformers,information from unlabeled data to guide model training would be better extracted.The semi-supervised cross learning method utilizes the output of weakly augmented images in one network as pseudo-labels to supervise the predictions of strongly augmented images in another network,fully leveraging the local-global information of unlabeled samples,encouraging consistency in predictions for the same input image between the two networks,and enhancing model generalization.Adaptive thresholding is used to filter pseudo-labels,improving their reliability.Experimental results on the AID and NWPU-RESISC45 datasets demon-strate the effectiveness of the proposed method.

high resolution remote sensing imagesscene classificationconvolutional neural networkstrans-formersemi-supervised learning

单飞龙、吕鹏远、李梦晨

展开 >

宁夏大学 信息工程学院,宁夏 银川 750021

宁夏"东数西算"人工智能与信息安全重点实验室,宁夏 银川 750021

高分辨率遥感图像 场景分类 卷积神经网络 Transformer 半监督学习

国家自然科学基金资助项目

42001307

2024

宁夏大学学报(自然科学版)
宁夏大学

宁夏大学学报(自然科学版)

CSTPCD
影响因子:0.377
ISSN:0253-2328
年,卷(期):2024.45(3)
  • 5